La suplementación mineral del ganado: Revisión de principios y tecnologías aplicadas, para mejorar el desempeño productivo

Contenido principal del artículo

José Fabio Alpízar-Bonilla

Resumen

La nutrición mineral del ganado, al igual que de la mayoría de los animales domésticos ha mostrado grandes avances que han mejorado la comprensión de sus funciones metabólicas, sobre la salud y el desempeño productivo. Objetivo: Mostrar los elementos que evidencian los avances de la comprensión de la nutrición mineral del ganado, sobre sus funciones metabólicas, la salud y el desempeño productivo, así como las tecnologías aplicadas con miras a mejorar la eficiencia alimenticia, en un contexto productivo, de salud y bienestar. Metodología: Se realizó una revisión bibliográfica basada en la búsqueda de publicaciones científicas de diferentes revistas y asociaciones de investigación, inclusive las recientes ediciones de los requerimientos de nutrientes del ganado lechero de la Academia Nacional de Ciencias, Ingeniería y Medicina (NASEM). Resultados: Las investigaciones muestran como desde 1970, las tecnologías han colaborado en gran medida a mejorar la comprensión y dar importancia a la suplementación mineral. Paralelamente, la implementación de nuevas e innovadoras metodologías, como el  acomplejamiento de un mineral, con moléculas orgánicas, así como, una mayor precisión en la estimación del requerimiento, evidencian mejoras sobre la absorción mineral, optimizando la productividad de los animales, en tanto que reducen las excreciones al medio ambiente.

Detalles del artículo

Cómo citar
La suplementación mineral del ganado: Revisión de principios y tecnologías aplicadas, para mejorar el desempeño productivo. (2023). Yulök Revista De Innovación Académica, 7(2), 119-129. https://doi.org/10.47633/yulk.v7i2.594
Sección
Investigación bibliográfica

Cómo citar

La suplementación mineral del ganado: Revisión de principios y tecnologías aplicadas, para mejorar el desempeño productivo. (2023). Yulök Revista De Innovación Académica, 7(2), 119-129. https://doi.org/10.47633/yulk.v7i2.594

Referencias

American Feed Control Officials. (2020). Official Publication of American Feed Control Officials Incorporated. P 386 – 387.

Alpízar, C y Cedeño, H. (2019). ¿Logramos una adecuada precisión en la alimentación de nuestras vacas? Observaciones en fincas lecheras especializadas. Revista Horizonte lechero. Edición N°9. Año 11. Setiembre, 2019. p 8,10 y 11. Edición digital https://issuu.com/proleche/docs/revista_horizonte_lechero_set_2019.

Azorín, I., Madrid, J., Martínez, S., López, M., López, B., López, J., & Hernández, F. (2020). ¿Can moderate Levels of organic selenium in dairy cow feed naturally enrich dairy products? Animals 2020. 102269; doi10.3390/ani10122269. www.mdpi.com/journal/animals

Beekman, C. (2021). Influencing rumen microbes improves nitrogen efficiency - All About Feed. Consultado el 07 de marzo.2021. https://wwwallaboutfeed.net/animal-feed-addives/infuencing-rumen micobes-improves-nitrogen-efficiency/

Bell B. (2010). Know your minerals and prevent disease. Feed Mix Magazine. Volume 10, number 2. 2002. p 24, 25 and 26.

Bonetti A, Tugnoli B, Piva A, Grilli E. Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals (Basel). 2021 Feb 28;11(3):642. doi: 10.3390/ani11030642. PMID: 33670980; PMCID: PMC7997240.

Castillo, A.R., St-Pierre, N.R., Silva del Rio, N., & Weiss, W.P. (2013). Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows. American Dairy Science Association J. Dairy Sci. 96 :3388–3398. http://dx.doi.org/ 10.3168/jds.2012-6121.

Caldera, E., Weigel B., Kucharczyk, V., Sellins, K., Archibeque, S., Wagner, J., Hyungchul, H., Spears, J., & Engle Terry E. (2019). Trace mineral sources influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. American Society of Animal Science. J. Animal Sci.2019.97:1852-1864. doi.101093/jas/skz072.

Calik A, Emami NK, White MB, Walsh MC, Romero LF, Dalloul RA. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part I: Growth performance, body composition and intestinal nutrient transporters. Poult Sci. 2022 Jun;101(6):101857. doi: 10.1016/j.psj.2022.101857. Epub 2022 Mar 15. PMID: 35461066; PMCID: PMC9048119.

Carlson, S., & Myer-Hill, G. (2019). Trace mineral supplementation for the intestinal health of young monogastric animals. Animals. Front. Vet. Sci. 6:73. Doi103389/fvets.2019.00073.

Castro, M., Silva, A., Costa e Silva, L., Rotta, P., Engle, E., & Marcondes M. (2018). Determination of macro mineral requirements for preweaned dairy calves in tropical conditions. American Dairy Science Association J. Dairy Sci. 102 :2973–2984. http://dx.doi.org/ 10.3168/jds.2018-151666.

Colomer, C., Flores-Mirelles, A., Baker, S., Frank, K.L., Lynch, AJL., Hultgren, S., Kitten,T., & Lemos, J.A. (2018). Manganesse acquisition is essential for virulence of enterococcus faecalis. PLos Pathog 14 (9): e1007102 https://doi.org/10.1371/journal.ppat.1007102

Costa e Silva, L., Valladares, F., Sebatia de Campos, E., Terry, P., Rotta, P., Mercondes, M., Sales Silva, F.A., Costa Martins, E., & Taishi, T. (2015). Macrominerals and trace elements requirements for beef cattle. Universidad Federal de Vicosa. Animal Science Department. Colorado State University. Animal Science Department. PLOS ONE DOI:10.1371 /Journal. pone. 0144464. December 14, 2015.

Coverdale, J.P.C., Barnett, J.P., Adamu, A.H., Griffiths, EJ., Steward, A.J., & Blindauer, C.A. (2019). A metallaproteomic analysis of interactions between plasma protein and zinc: elevated fatty acid levels affect zinc distribution. The Royal Society of Chemistry. Rsc.li/metallomics. Doi: 10.1039/c9mt00177h.

Daniel, J.B., Kvidera, S.K., & Martin-Tereso, J. (2020). Total tract digestibility and milk productive of dairy cows as affected by trace mineral sources. American Dairy Science Association. J. Dairy Sci. 103. https://doi.org/10.3168/jds.2020-18754.

Duplessis, M., Wright, T.C., & Bejaei, M. 2022. A Survey of Canadian dairy nutritionists to assess current trace elements formulation practices. American Dairy Science Association. J. Dairy Sci. 106. http://dx.doi.org/10.3168/jds.2022-22943.

Engle, T.E. (2011). Trace minerals metabolism in ruminants. Department of Animal Sciences. Colorado State University. USA. In Southwest Nutrition & Management Conference. Temple, Arizona. February 24 – 25 2011.

Ewing, W.N., & Charlton, S.J. (2007). The minerals directory. Your easy-to-use guide on mineral nutrition (Guía de minerals. Su guía práctica sobre la nutrición mineral) 2nd Edition. British Library Cataloguinng in Publication Data.

Faulkner, M.J., St-Pierre, N.R., & Weiss, W.P. (2017). Effect of source of trace minerals in either forage- or by-product–based diets fed to dairy cows: 2. Apparent absorption and retention of minerals. American Dairy Science Association. J. Dairy Sci. 100:5368–5377. https://doi.org/10.3168/jds.2016-12096.

Fitzsimmons, L., Liu, L., Porwollik, S., Chakraborty, S., Desai, P., & Tapscott, T. (2018.) Zinc-dependant substrate-level phosphorylation powers Salmonella growth under stress of innate host response. PLoS Pathog 14 14 (10): e1007388. https://doi.org/101371/journal.ppat.1007388.

Galloway, P., McMillan, D.C., & Sattar, N. (2000). Effect of the inflammatory response on trace element and vitamin status. Ann Clin Biochem 2000; 37:289-297.

Genther, O.N., & Hansen, S.L. (2015). The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. American Dairy Science Association. J. Dairy Sci. 98 :566–573. http://dx.doi.org/ 10.3168/jds.2014-8624

Goff, J.P. (2017). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. American Dairy Science Association. J. Dairy Sci. 101:2763–2813. https://doi.org/10.3168/jds.2017-13112.

Gomes da Silva, G., da Silva Dias, M.S., Seiti, C., Tenorio, A., Del Valle, T.A., Scognamiglio, N.T., Freitas, C., Reis, K., Melville, A.M., Navajas, L., Koontz, A., Navarro, D., Costa e Silva, L.F., & Palma F. (2022). Feeding reduced levels of trace minerals in proteinate form and selenium-yeast to transition cows: Performance, trace mineral, and antioxidant status, peripheral neutrophil activity and oocyte quality. American Dairy Science Association. J. Dairy Sci. 106: https://doi.org/10.3168/jds.2022-21939.

Gould, L., & Kendall, N.R. (2011). Role of rumen in copper and thiomolybdate absorption. Nutrition Research Views, 24, 176 – 182.

Hachemi, M., Sexton J.R., Briens, M., & Whitehouse, N. (2022). Efficacy of hydroxyl-selenomethionine on plasma and milk selenium in mid-lactation dairy cows. American Dairy Science Association. J. Dairy Sci. 106: https://doi.org/10.3168/jds.2022-22323.

Hall, J.A., Bobe, G., Hunter, J.K., Vorachek, W.R., & Steward, W.C. (2013). Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE 8(3): e58188. Doi: 10.1371/journal.pone. 0058188.

Hergenreder, J.E., Legako, J.F., Dinh, T.N., Spivey, K.S., Baggerman, J.Q., Broadway, P.R., Beckett, J.L., Branine, M.E., & Johnson, BJ. (2016). Zinc methionine supplementation impacts protein expression in calf-fed Holstein steers with minimal impact on feedlot performance. Biol Trace Elem Res (2016) 171:315-327. Doi 10.1007/s12011-015.0521-2.

Hojyo, S., & Fukada, T. (2016). Roles of zinc signaling in the immune system. Hyndawi Publishing Corporation. Journal of immunology Research. Volume 2016, Article ID 6762343,21. https://dx. Doi.org/10.1155/20166762343.

Horst. E.A., Mayorga, M., Al-Qaisi, M., Abeyta, M.A., Goetz B.M., Ramirez, H.A,, Kleinschmit, D.H., & Baumgard, L.H. (2019). Effects of dietary zinc source on the metabolic and immunological response to lipopolysaccharide in lactating Holstein dairy cows. American Dairy Science Association. J. Dairy Sci. 102:11681–11700. https://doi.org/10.3168/jds.2019-17037.

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Donald, M.T., Sochor, J., Mojmir, B., Melcova, M., Zidcova, J., & Kizek, R. (2017). A summary of new findings on the biological effects of selenium in selected animal species. A critical review. Int. J. Mol. Sci. 2017, 18,2209, doi:10.3390/ijms18102209.

Hutjens, M. (2008). Avoiding mistakes when adjusting your dairy rations during volatile times. Department of Animal Sciences. University of Illinois, Urbana. Proceeding of dairy Production Symposium. November 2008. p. 51 - 61.

Ibraheem, M., Kvidera, S.K., Fry, R.S., & Bradford, B.J. (2022). Meta-analysis of the effects of sulfate versus hydroxyl trace mineral source on nutrient digestibility in dairy and beef cattle. American Dairy Science Association. J. Dairy Sci. 106: https://doi.org/10.3168/jds.2022-22490.

Kim, H., Loftus, J.P., Gagne, J.W. Rutzzke, M.A., Glahn, R.P., & Wakshlag, J.J. (2018). Evaluation of selected ultra-trace minerals in commercially available dry dog foods. Veterinary Medicine: Research and reports. 2018:9 43-51.

Koeleman, E. 2016. EU copper levels of feed revised. All About Feed magazine. EU copper levels of feed revised - All About Feed

Khelil-Arfa, H., Faverdin, P., & Boudon, A. (2013). Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows. American Dairy Science Association. J. Dairy Sci. 97:2305-2318 https://doi.org/10.3168/jds.2013-7079.

Lucema, J. (2009). El empleo de complejantes y quelatos en la fertilización de micronutrientes. Revista Ceres. vol. 56, núm. 4, Julio-agosto, 2009, p 527-535. Universidad Federal de Vicosa. Vicosa, Brasil.

Maylin GA, Rubin DS, Lein DH. Selenium and vitamin E in horses. Cornell Vet. 1980 Jul;70(3):272-89. PMID: 7428374.

Mion, B., Van Winters, B., King, K., Spricigo, JFW., Ogilvie,L., Guan,L., DeVries, TJ., McBride, BW., LeBlanc, SJ., Steele, M.A., & Ribiero, J. (2022). Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. American Dairy Science Association. J. Dairy Sci. 105. https://doi.org/10.3168/jds.2022-21908.

Misra, S., Boylan M., Selvan, A., Spallholz, J.E., & Bjӧrnstedt, T. (2015). Redox-active selenium compounds _ From toxicity and cell death to cancer treatment. Nutrients 2015, 7, 3556; doi:10.3390/nu7053536.

National Academy of Science, Engineering and Medicine (NASEM). (2021). Nutrient Requirements of Dairy Cattle. Eighth edition. Revised Edition. National Academy Press.

Nayeri, A, Upah., N.C., Sucu, E., Sanz-Fernandez, M.V., DeFrain, J.M., Gorden, P.J., & Baumgard, L.H. (2013). Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. American Dairy Science Association. J. Dairy Sci. 97:4392-4404. https://doi.org/10.3168/jds.2013-7541.

National Research Council (NRC). (2001). Nutrient Requirements of Dairy Cattle. Seventh Revised Edition. National Academy Press.

Nocek, J.E., Soccha, M.T., & Tomlinson, D. (2006). The Effect of Trace Mineral Fortification Level and Source on Performance of Dairy Cattle. American Dairy Science Association. J.Dairy Sci. 89: 2679 – 2693.

Opgenorth, J., Abuajamieh, M., Horst, E.A., Kvider, S.K., Johnson, J.S., Mayorga, E.J., Sanz-Fernandez, M.V., Al-Qaisi, M.A., DeFrain, J.M., Kleinschmit, D.H., Gorden, P.J., & Baumgard, L.H. (2020). The effects of zinc amino acid complex on biomarkers of gut integrity, inflammation, and metabolism in heat-stress ruminants. American Dairy Science Association. J. Dairy Sci. 104. https://doi.org/10.3168/jds.2020-18909.

Otero, M.A., Saura, G., y Martínez, J.A. (2008). Enriquecimiento de biomasa de levadura con micronutrientes esenciales. ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. XLII, núm. 1-3, enero-diciembre, 2008, pp. 60-68. Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar Ciudad de La Habana, Cuba.

Rabiee, A.R., Lean, I.J., Stevenson, M.A., & Socha, M. (2010). Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. American Dairy Science Association. J. Dairy Sci. 93 :4239–4251. doi:10.3168/jds.2010-3058.

Razzaghi, A., Vakili, A.R, Khorrami, B., Ghaffari, M.H., & Rico, E. (2021). Effect of dietary supplementation or cessation of magnesium-based alkalizers on milk fat output in dairy cows under milk fat depression conditions. American Dairy Science Association. J. Dairy Sci. 105: doi:10.3168/jds.2021-20457.

Reed, S., Qin, X., Ran-Resster, R., Brenna, J.T., Glahn, R.P., & Tako, E. (2014). Dietary zinc deficiency affects blood linoleic acid: Dihomo-ϒ-Linoleic acid (LA:DGLA) ratio; a sensitive physiological marker of zinc status in vivo (Gallus gallus). Nutrients 2014, 6, 1164-1180; doi:10.3390/nu6031164.

Sivertsen T, Vie E, Bernhoft A, Baustad B. Vitamin E and selenium plasma concentrations in weanling pigs under field conditions in Norwegian pig herds. Acta Vet Scand. 2007 Jan 3;49(1):1. doi: 10.1186/1751-0147-49-1. PMID: 17201915; PMCID: PMC1779789.

Skrajnowaska, D., & Bobrowska-Korzczak, B. (2019). Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019, 11, 2273; doi:10.3390/nu1102273.

Suttle, N.F. (2010). Mineral Nutrition of livestock. 4th Edition. CABI Head Office. Nosworthy Way. Walingford, Oxofordshire. OX10 8DE UK. 565 p.

Timmons, R.A. (2009). Selecting an organic mineral supplement. Quality Assurance Director, Alltech Inc. Symposium on Feed Applied Technology. November 6 – 7, 2009. Beijing China.

Valldecabres, A., & Silva-del-Rio, N. (2021). First-milking calostrum mineral concentration and yields: Comparison to second milking milking and associations with serum mineral concentrations, parity and yield in multiparous Jersey cows. American Dairy Science Association. J. Dairy Sci. 105: doi:10.3168/jds.2021-21069.

Weiss, W.P. (2017). A 100-Year review. From ascorbic acid to zinc – mineral and vitamin nutrition of dairy cows. American Dairy Science Association. J. Dairy Sci. 100 :10045-10060. https://doi.org/10.3168/jds.2017 - 12935. Journal of Dairy Science. Vol.100 N° 12, 2017.

Wu, Z., & Satter, L.D. (2000). Milk production and reproductive performance of dairy cows fed two concentrations of phosphorus for two years. American Dairy Science Association. J. Dairy Sci.83:1052-1063.

Zentrichová V, Pechová A, Kovaříková S. Selenium and Dogs: A Systematic Review. Animals (Basel). 2021 Feb 6;11(2):418. doi: 10.3390/ani11020418. PMID: 33562028; PMCID: PMC7915357.

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 9 10 11 12 13 > >>