Soil degradation by compaction as a function of weight distribution on the axles of agricultural tractors

Main Article Content

Natalia Gómez Calderón
Javier Rodríguez Yáñez

Abstract

Soil compaction caused by agricultural machinery traffic has a negative effect on a range of soil functions and ecosystem services. Using the information of the agricultural equipment registered in Costa Rica and considering that the average weight limit that resists the soil in friable conditions is 49kN per axis, three scenarios of static weight distribution were proposed in the front and rear axles. It was found that only 3.1% of the tractors with tires exceeded the weight limit, but when the tractor was analyzed with the suspended implement, it was found that the distribution of the load generates an effect in the percentage of excess weight in the axles. The more powerful tractors should use lifting
implements of less weight than their capacity, or use pulling implements so that they do not exceed the limit weight in any of their axes.

Article Details

How to Cite
Soil degradation by compaction as a function of weight distribution on the axles of agricultural tractors. (2020). Yulök Revista De Innovación Académica, 3(2), 44-50. https://doi.org/10.47633/yulk.v3i2 (julio a diciembre).221
Section
Artículo científico

How to Cite

Soil degradation by compaction as a function of weight distribution on the axles of agricultural tractors. (2020). Yulök Revista De Innovación Académica, 3(2), 44-50. https://doi.org/10.47633/yulk.v3i2 (julio a diciembre).221

References

Arrazate-Oropeza, B., Gómez-Calderón, N., Villagra-Mendoza, K. (2016). Comparación de patinaje bajo diferentes tipos de labranza de suelo. In XII Congreso Latinoamericano y del Caribe de Ingeniería Agrícola (p. 649). Bogotá, Colombia: Universidad Nacional de Colombia.

Arvidsson, J., Keller, T. (2011). Comparing penetrometer and shear vane measurements with measured and predicted mouldboard plough draught in a range of Swedish soils. Soil and Tillage Research, 111(2), 219–223. https://doi.org/10.1016/j.still.2010.10.005

ASABE. ASAE Standarts S495. Uniform Terminology for Agricultural Machinery Management (2006).

Deere, J. (2012). Manual de operación y mantenimiento John Deere 6405.

Gasso, V., Sørensen, C., Oudshoorn, F., Green, O. (2013). Controlled traffic farming: A review of the environmental impacts. European Journal of Agronomy, 48, 66–73. https://doi.org/10.1016/j.eja.2013.02.002

Gómez-Calderón, N., Villagra-Mendoza, K., Solórzano-Quintana, M. (2018). La labranza mecanizada y su impacto en la conservación del suelo (revisión literaria). Revista Tecnología En Marcha, 31(1), 170. https://doi.org/10.18845/tm.v31i1.3506

Gutiérrez-Rodríguez, F., González-Huerta, A., Pérez-López, D., Franco-Mora, O., Morales-Rosales, E., Saldívar-Iglesias, P., Martínez-Rueda, C. (2012). Compactación Inducida por el Rodaje de Tractores Agrícolas en un Vertisol. Compaction Induced by Breaking of Agricultural Tractors in Vertisol. Terra Latinoamericana, 30(1), 1–7.

Hartge, K., Horn, R. (2016). Essential Soil Physics. (R. Horton, R. Horn, J. Bachmann, & S. Peth, Eds.) (1st.Englis). Schweizerbart Science Publishers, Stuttgart, Germany: Schweizerbart Science Publishers.

Horne, R., Hartge, K.(2016). Essential Soil Physics. (R. Horton, R. Horn, J. Bachmann, & S. Peth, Eds.) (First). Sttutgart, Germany: Schweizerbart Science Publishers. Retrieved from www.schweizerbart.com/9783510652884

Jorajuria, D., Draghi, L. (2000). Sobrecompactación del suelo agrícola parte I: influencia diferencial del peso y del número de pasadas. Revista Brasileira de Engenharia Agrícola e Ambiental, 4(3), 445–452.

Keller, T., Arvidsson, J. (2016). Soil & Tillage Research A model for prediction of vertical stress distribution near the soil surface below rubber-tracked undercarriage systems fi tted on agricultural vehicles. Soil & Tillage Research, 155, 116–123. https://doi.org/10.1016/j.still.2015.07.014

Lal, R.,Shukla, M. (2005). Principles of Soil Physics. (I. Marcel Dekker, Ed.). New York, USA: Taylor & Francis e-Library.

Ministerio de Agricultura y Ganadería [MAG]. Ley para el Uso, manejo y conservación de suelos (1998). Costa Rica.

Pérez, L. (2012). Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadistica-fractal. Universidad Politécnica de Madrid.

Ribes, J., Marcos, N., Aguera, J., Blanco, G. (2005). Estudios de compactación de suelos: neumáticos y tractores. Vida Rural, 1(1), 48–52.

Salem, H., Valero, C., Muñoz, M., Rodríguez, M., Silva, L. (2015). [5] Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma. https://doi.org/10.1016/j.geoderma.2014.08.014

Serrano, J., Peça, J., Silva, J., Márquez, L. (2009). The effect of liquid ballast and tyre inflation pressure on tractor performance. Biosystems Engineering, 102(1), 51–62. https://doi.org/10.1016/j.biosystemseng.2008.10.001

Terminiello, A., Balbuena, R., Claverie, J., Casado, J. (2000). Compactación inducida por el tránsito vehicular sobre un suelo en producción hortícola. Revista Brasileira de Engenharia Agrícola e Ambiental, 4(2), 290–293.

Vaz, C., Manieri, J., de María, I., Tuller, M. (2011). Modeling and correction of soil penetration resistance for varying soil water content. Geoderma, 166(1), 92–101. https://doi.org/10.1016/j.geoderma.2011.07.016