Caracterización de lodos de industrias para un posible aprovechamiento en artes
Contenido principal del artículo
Resumen
Se evaluaron lodos de lagunas de oxidación, provenientes de diferentes industrias con la finalidad de estudiar su composición mediante una caracterización química, así como determinar una posible ruta para su valorización. Para la caracterización de los lodos se utilizó gravimetría para el contenido de SiO2, espectroscopía infrarroja, difracción de rayos X, análisis termogravimétrico, espectrometría de dispersión de energía de rayos X (EDS) y fluorescencia de rayos X (XRF). Se determinó que los lodos provenientes de la industria de pinturas poseen mayor contenido de SiO2 con un 17,2±0,2 % en masa y se identificaron diferentes fases presentes en el lodo como albita, cuarzo y rutilo, además de metales de interés en pigmentos como hierro, cromo y zinc. Mostrando que a pesar de que la matriz es altamente compleja existen rutas de aprovechamiento de este residuo.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Todos los artículos publicados están protegidos con la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
Cómo citar
Referencias
Armbruster, R. F. (2019). John J. Earley’s Mosaic Concrete Art. Concrete International, 41(3), 27–35. https://search-proquest-com.ezproxy.sibdi.ucr.ac.cr/trade-journals/john-j-earleys-mosaic-concrete-art/docview/2188534312/se-2?accountid=28692
Balmer, J. (2015, May 21). The Fine Art of Toxic Waste. Science Friday. https://www.sciencefriday.com/articles/the-fine-art-of-toxic-waste/
Camareno, V., Villalobos, M., Vargas Camareno, M., & Montero Villalobos, M. L. (2006). Estudio del uso del lodo residual de la empresa Extralum S. A. como material alternativo en la fabricación de cementos especiales. In Tecnología en Marcha (Vol. 19, Issue 3).
Canziani, R., & Spinosa, L. (2019). Sludge from wastewater treatment plants. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery (pp. 3–30). Elsevier. https://doi.org/10.1016/B978-0-12-815907-1.00001-5
Carbonell, J. C. (2011). Pinturas y recubrimientos: Introducción a su tecnología. Editorial Díaz de Santos, S.A. https://books.google.co.cr/books?id=sH3K_xGpHggC
Carbonell, J. C. (2014). Pinturas y barnices: Tecnología básica. Ediciones Díaz de Santos. https://books.google.co.cr/books?id=jmkWBQAAQBAJ
Carneiro, J., Tobaldi, D. M., Capela, M. N., Novais, R. M., Seabra, M. P., & Labrincha, J. A. (2018). Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Management, 80, 371–378. https://doi.org/10.1016/j.wasman.2018.09.032
Carranza, C., & Montero-Villalobos, M. L. (2016). Producción de sulfato de aluminio y zeolita a partir de los lodos residuales de la empresa Extralum S.A. Revista Tecnología En Marcha, 15(3), Pág. 49-54. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2814
Carter, C. B., & Norton, M. G. (2013). Glass and Glass-Ceramics. In Ceramic Materials (pp. 389–409). Springer New York. https://doi.org/10.1007/978-1-4614-3523-5_21
Chen, M. C., Koh, P. W., Ponnusamy, V. K., & Lee, S. L. (2022). Titanium dioxide and other nanomaterials based antimicrobial additives in functional paints and coatings: Review. In Progress in Organic Coatings (Vol. 163). Elsevier B.V. https://doi.org/10.1016/j.porgcoat.2021.106660
Correia, A. M., Clark, R. J. H., Ribeiro, M. I. M., & Duarte, M. L. T. S. (2007). Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). Journal of Raman Spectroscopy, 38(11), 1390–1405. https://doi.org/10.1002/jrs.1786
Davies-Colley, R. J., Hickey, C. W., & Quinn, J. M. (1995). Organic matter, nutrients, and optical characteristics of sewage lagoon effluents. New Zealand Journal of Marine and Freshwater Research, 29(2), 235–250. https://doi.org/10.1080/00288330.1995.9516657
Esteves, D., Hajjaji, W., Seabra, M. P., & Labrincha, J. A. (2010). Use of industrial wastes in the formulation of olivine green pigments. Journal of the European Ceramic Society, 30(15), 3079–3085. https://doi.org/10.1016/j.jeurceramsoc.2010.07.006
Evans, A. G., & Langdon, T. G. (1976). Structural ceramics. Progress in Materials Science, 21(3), 171–285. https://doi.org/https://doi.org/10.1016/0079-6425(76)90001-3
Facultad de Artes. (2023). Historia de la Facultad de Artes. Facultad de Artes. https://artes.ucr.ac.cr/nosotros/#historia
Feng, D., Provis, J. L., & Van Deventer, J. S. J. (2012). Thermal activation of albite for the synthesis of one-part mix geopolymers. Journal of the American Ceramic Society, 95(2), 565–572. https://doi.org/10.1111/j.1551-2916.2011.04925.x
Garcia-Valles, M., Aly, M. H., El- Fadaly, E., Hafez, H. S., Nogués, J., & Martinez, S. (2011). Materiales vitrocerámicos a partir de lodos procedentes de una estación de depuración de aguas residuales urbanas (en la Ciudad de El-Sadat, Egipto). Boletín de La Sociedad Española de Cerámica y Vidrio, 50(5), 261–266. https://doi.org/10.3989/cyv.342011
Ion, J. (2005). 5.2.2.2 Atomic Arrangement. In Laser Processing of Engineering Materials - Principles, Procedure and Industrial Application (pp. 141–142). Elsevier. https://app.knovel.com/hotlink/pdf/id:kt00BJOGQ1/laser-processing-engineering/ceramics-a-atomic-arrangement
Khezri, S. M., Shariat, S. M., & Tabibian, S. (2013). Evaluation of extracting titanium dioxide from water-based paint sludge in auto-manufacturing industries and its application in paint production. Toxicology and Industrial Health, 29(8), 697–703. https://doi.org/10.1177/0748233711430977
Kuo, Y.-M., Lin, T.-C., & Tsai, P.-J. (2003). Effect of SiO2 on Immobilization of Metals and Encapsulation of a Glass Network in Slag. Journal of the Air & Waste Management Association, 53(11), 1412–1416. https://doi.org/10.1080/10473289.2003.10466307
Kuo, Y.-M., Wang, J.-W., Wang, C.-T., & Tsai, C.-H. (2008). Effect of water quenching and SiO2 addition during vitrification of fly ash. Journal of Hazardous Materials, 152(3), 994–1001. https://doi.org/10.1016/j.jhazmat.2007.07.081
Kwarciak-Kozłowska, A. (2019). Co-composting of sewage sludge and wetland plant material from a constructed wetland treating domestic wastewater. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery (pp. 337–360). Elsevier. https://doi.org/10.1016/B978-0-12-815907-1.00015-5
Kwon, E. E., Lee, T., Ok, Y. S., Tsang, D. C. W., Park, C., & Lee, J. (2018). Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 153, 726–731. https://doi.org/10.1016/j.energy.2018.04.100
Learner, T., Learner, T. J. S., Smithen, P., Institute, G. C., (U.S.), N. G. of A., Krueger, J. W., Gallery, T., & Schilling, M. R. (2007). Modern Paints Uncovered: Proceedings from the Modern Paints Uncovered Symposium. Getty Conservation Institute. https://books.google.co.cr/books?id=ANAxCwAAQBAJ
Long, H., Huang, X., Liao, Y., & Ding, J. (2021). Recovery of Cr (Ⅵ) from tannery sludge and chrome-tanned leather shavings by Na2CO3segmented calcination. Journal of Environmental Chemical Engineering, 9(2). https://doi.org/10.1016/j.jece.2021.105026
Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (1991). Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill New York.
Morales Acevedo, A., & Pérez Sánchez, G. F. (2003). Caracterización por espectroscopía en el infrarrojo de óxidos de silicio depositados en ambiente de N2O. Superficies y vacío, 16(2), 16–18. https://www.redalyc.org/articulo.oa?id=94216205
OECD. (2020). Estudios Económicos de la OCDE: Costa Rica 2020. OECD. https://doi.org/10.1787/84cbb575-es
Ovčačíková, H., Velička, M., Maierová, P., Vlček, J., Tokarský, J., & Čegan, T. (2021). Characterization of Waste Sludge Pigment from Production of ZnCl2. Minerals, 11(3), 313. https://doi.org/10.3390/min11030313
Passuello, A., Cadiach, O., Perez, Y., & Schuhmacher, M. (2012). A spatial multicriteria decision making tool to define the best agricultural areas for sewage sludge amendment. Environment International, 38(1), 1–9. https://doi.org/https://doi.org/10.1016/j.envint.2011.07.013
Rasmussen, H., Halkj, P., & Nielsen, E. (1996). IRON REDUCTION IN ACTIVATED SLUDGE MEASURED WITH DIFFERENT EXTRACTION TECHNIQUES. In War. Res (Vol. 30, Issue 3).
Real Academia Española. (2021). Arte. Diccionario de La Lengua Española [Versión 23,5 En Línea]. https://dle.rae.es/arte
Reig, F. B., Adelantado, J. V. G., & Moreno, M. C. M. M. (2002). FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta, 58(4), 811–821.
Ren, J., Li, Z., Liu, S., Xing, Y., & Xie, K. (2008). Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties. Catalysis Letters, 124(3–4), 185–194. https://doi.org/10.1007/s10562-008-9500-y
Rodríguez, E. D., Bernal, S. A., Provis, J. L., Payá, J., Monzó, J. M., & Borrachero, M. V. (2012). Structure of Portland Cement Pastes Blended with Sonicated Silica Fume. Journal of Materials in Civil Engineering, 24(10), 1295–1304. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000502
Segura Sierpes, Y., Borrachero Rosado, M. V., Monzó Balbuena, J. M., & Payá Bernabeu, J. (2016). Preliminary studies on hydrated cement for its reuse in geopolymers. DYNA, 83(196), 229–238. https://doi.org/10.15446/dyna.v83n196.54189
Truong, T. Van, Tiwari, D., Mok, Y. S., & Kim, D. J. (2021). Recovery of aluminum from water treatment sludge for phosphorus removal by combined calcination and extraction. Journal of Industrial and Engineering Chemistry, 103, 195–204. https://doi.org/10.1016/j.jiec.2021.07.033
Van Truong, T., & Kim, D.-J. (2022). Synthesis of high quality boehmite and γ-alumina for phosphorus removal from water works sludge by extraction and hydrothermal treatment. Environmental Research, 212, 113448. https://doi.org/10.1016/j.envres.2022.113448
Verbyla, M. E. (2016). Ponds, Lagoons, and Wetlands for Wastewater Management. Momentum Press. http://ebookcentral.proquest.com/lib/sibdilibro-ebooks/detail.action?docID=4770607
Vereš, J., Lovás, M., Jakabský, Š., Šepelák, V., & Hredzák, S. (2012). Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy, 129–130, 67–73. https://doi.org/10.1016/j.hydromet.2012.09.008
Yang, B., Jiang, S., Zhang, C., Zhao, G., Wu, M., Xiao, N., & Su, P. (2021). Recovery of iron from iron-rich pickling sludge for preparing P-doped polyferric chloride coagulant. Chemosphere, 283. https://doi.org/10.1016/j.chemosphere.2021.131216
Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60–73. https://doi.org/https://doi.org/10.1016/j.watres.2015.04.002
Yang, J., Zhang, D., Hou, J., He, B., & Xiao, B. (2008). Preparation of glass-ceramics from red mud in the aluminum industries. Ceramics International, 34(1), 125–130. https://doi.org/10.1016/j.ceramint.2006.08.013
Yi, J., Dong, B., Jin, J., & Dai, X. (2014). Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102548
Zeng, X., Li, E., Xia, G., Xie, N., Shen, Z.-Y., Moskovits, M., & Yu, R. (2021). Silica-based ceramics toward electromagnetic microwave absorption. Journal of the European Ceramic Society, 41(15), 7381–7403. https://doi.org/10.1016/j.jeurceramsoc.2021.08.009
Zhen, G., Lu, X., Wang, B., Zhao, Y., Chai, X., Niu, D., Zhao, A., Li, Y., Song, Y., & Cao, X. (2012). Synergetic pretreatment of waste activated sludge by Fe(II)-activated persulfate oxidation under mild temperature for enhanced dewaterability. Bioresource Technology, 124, 29–36. https://doi.org/10.1016/j.biortech.2012.08.039
Zhu, R., Chen, Y., Zhao, T., Jiang, Q., Wang, H., Zheng, L., Shi, D., Zhai, J., He, Q., & Gu, L. (2020). Enhanced mesophilic anaerobic co-digestion of waste sludge and food waste by using hematite (α-Fe2O3) supported bentonite as additive. Bioresource Technology, 313. https://doi.org/10.1016/j.biortech.2020.123603