Revenue optimization in taxi services using linear programming and forecasting with Facebook Prophet in R
DOI:
https://doi.org/10.47633/v9y3yb65Keywords:
Facebook Prophet, linear programming, profit maximization, revenue optimization, taxi servicesAbstract
The study compares linear programming and Facebook Prophet to optimize revenue in urban taxi services using NYC TLC data from the first ten months of 2025. The relationship between distance, time, and earnings was modeled to maximize daily driver income and Prophet was used to forecast demand and identify trends and seasonality, with peak activity on Thursdays and Saturdays. Results indicate that medium-length trips provide the best balance between revenue and time, and that combining both approaches offers a more robust strategy by integrating forecasting and optimization, enhancing operational planning and service profitability.
Downloads
References
Create Elegant Data Visualisations Using the Grammar of Graphics. (n.d.). Retrieved November 2, 2025, from https://ggplot2.tidyverse.org/
Facebook Open Source. (n.d.). Prophet Documentation. Retrieved November 2, 2025, from https://facebook.github.io/prophet/docs/quick_start.html#r-api
Fatih Tüzen, M. (2024, September 29). Mastering Date and Time Data in R with lubridate | R-bloggers. https://www.r-bloggers.com/2024/09/mastering-date-and-time-data-in-r-with-lubridate/
Gonce Kocken, H., & Ahlatcioglu, M. (2011). A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients. Mathematical Problems in Engineering, 2011(1), 103437. https://doi.org/https://doi.org/10.1155/2011/103437
Guerrero Salas, Humberto. (2024). Programación Lineal Aplicada. 415. https://books.google.com/books/about/Programaci%C3%B3n_lineal_aplicada_3da_edici.html?hl=es&id=1Y2bEAAAQBAJ
López, E. Gómez. (2018). Tu llave a la libertad financiera Todo lo que necesitas saber para alcanzar la libertad financiera a través del ahorro y la inversión Esmeralda Gómez López. Alienta.
Moltó Quiles, E. (2024). Gestión de ingresos. http://dspace.umh.es/handle/11000/33207
Sergio, J., Efraín, S., & Farfán, M. (2014). El arte de programar en R: un lenguaje para la estadística. www.imta.gob.mx
Taylor, S. J., & Letham, B. (2017). Forecasting at scale. https://doi.org/10.7287/PEERJ.PREPRINTS.3190V2
Wang, C., Wang, J., Zhang, Y., Malenje, J. O., & Han, Y. (2024). Optimizing Taxi-Pooling Operations to Enhance Efficiency and Revenue: A Queuing Model Approach. Mathematics, 12(20), 3210. https://doi.org/10.3390/math12203210
Wilkinson, L. (2005). The Grammar of Graphics. In The Grammar of Graphics (2nd ed.). Springer-Verlag. https://doi.org/10.1007/0-387-28695-0
Windover, P., Owens, R., Levinson, T., Laughlin, M., & Gaines, L. (2015). Stop and Restart Effects on Modern Vehicle Starting System Components. https://doi.org/10.2172/1184379
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2026 Angie Gabriela Esquivel-López, Sebastian Quesada-Córdoba, Esteban Andrés Espinoza-Solano

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles in the Revista Académica Arjé are published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
This means that:
-
Attribution: Proper credit must be given to the original authors, a link to the license must be included, and any changes made must be indicated.
-
NonCommercial: The material may not be used for commercial purposes.
-
ShareAlike: If the work is adapted or remixed, the resulting version must be distributed under the same license.
More information at: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en






