IoT en Captura y Análisis de Sonido en Agroindustria: Un Estudio de Literatura
DOI:
https://doi.org/10.47633/81qth861Palabras clave:
Internet de las Cosas (IoT), análisis de sonido en agroindustria, monitoreo acústico agrícola, detección de plagas mediante IoT, agricultura inteligenteResumen
Este artículo tiene como objetivo revisar y analizar la literatura sobre la aplicación del Internet de las Cosas (IoT) en la captura y análisis de sonido en la agroindustria, un área emergente con gran potencial para mejorar la eficiencia y sostenibilidad agrícola. El estudio busca identificar el estado actual de la investigación, las principales tendencias y las áreas de oportunidad en este campo. Para llevar a cabo este análisis, se realizó una revisión sistemática de la literatura utilizando Google Académico como base de datos académica, enfocándose en publicaciones que abordaran específicamente la integración del IoT en la monitorización acústica. El proceso incluyó la recolección y análisis de datos bibliométricos, así como la evaluación de las características de las investigaciones realizadas hasta la fecha.
Los resultados destacan que la mayoría de los estudios son recientes, con un enfoque particular en aplicaciones como la detección de plagas y la monitorización del estado de los cultivos mediante el análisis de sonido. A pesar del interés creciente, se identifican importantes vacíos en áreas como el uso de inteligencia artificial y aprendizaje automático en la interpretación de los datos acústicos recogidos. Las conclusiones del estudio subrayan la necesidad de continuar con el desarrollo de sistemas IoT más avanzados, especialmente en campos como la apicultura y la ecología, donde la aplicación del análisis de sonido puede tener un impacto significativo. Este trabajo proporciona una base sólida para futuras investigaciones y el desarrollo de tecnologías innovadoras en la agroindustria.
Descargas
Referencias
Referencias
Abd Aziz, N. S. N., Mohd Daud, S., Dziyauddin, R. A., Adam, M. Z., & Azizan, A. (2021). A review on computer vision technology for monitoring poultry farm—Application, hardware, and software. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2020.3047818
Abdollahi, M., Giovenazzo, P., & Falk, T. H. (2022). Automated beehive acoustics monitoring: A comprehensive review of the literature and recommendations for future work. Applied Sciences, 12(8), 3920. https://doi.org/10.3390/app12083920
Adesipo, A., Fadeyi, O., Kuca, K., Krejcar, O., Maresova, P., Selamat, A., & Adenola, M. (2020). Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors, 20(21), 5977. https://doi.org/10.3390/s20215977
Ajao, L., Adedokun, E. A., Mua'zu, M. B., & Agajo, J. (2021). Smart embedded wireless system design: An Internet of Things realization. International Journal of Automation and Smart Technology, 11(1), Article 2146. https://doi.org/10.5875/ausmt.v11i1.2146
Ali, M. A., Sharma, A. K., & Dhanaraj, R. K. (2024). Heterogeneous features and deep learning networks fusion-based pest detection, prevention and controlling system using IoT and pest sound analytics in a vast agriculture system. Computers and Electrical Engineering, 116, 109146. https://doi.org/10.1016/j.compeleceng.2024.109146
Astill, J., Dara, R. A., Fraser, E. D. G., & Sharif, S. (2018). Detecting and predicting emerging disease in poultry with the implementation of new technologies and big data: A focus on avian influenza virus. Frontiers in Veterinary Science, 5. https://doi.org/10.3389/fvets.2018.00263
Bankinter & Accenture. (2011). El internet de las cosas. Fundación de la Innovación Bankinter. Recuperado el 16 de junio de 2024 de https://www.fundacionbankinter.org/wp-content/uploads/2021/09/Publicacion-PDF-ES-FTF_IOT.pdf
Camargo Jáuregui, W. H. (2016). Las TIC y su aplicación en la captura y análisis de datos relacionados con el ruido ambiental en el contexto físico de la Universidad Francisco de Paula Santander. Maestría en Desarrollo Sostenible y Medioambiente. Recuperado de https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/3082
Chen, G., Li, C., Guo, Y., Shu, H., Cao, Z., & Xu, B. (2022). Recognition of cattle’s feeding behaviors using noseband pressure sensor with machine learning. Frontiers in Veterinary Science, 9:822621. https://doi.org/10.3389/fvets.2022.822621
Espinoza Ortiz, C. E., & Sandoval Sandoval, E. G. (2022). Protocolo para telemetría por medio de la tecnología celular GSM y SMS empleando el microcontrolador Arduino. Repositorio Institucional - UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/113803
Guntoro, B., Hoang, Q. N., A’yun, A. Q., & Rochijan. (2019). Dynamic responses of livestock farmers to smart farming. IOP Conference Series: Earth and Environmental Science, 372(1), 012042. https://doi.org/10.1088/1755-1315/372/1/012042
Hoye, T., August, T., Balzan, M., & Biesmeijer, K. (2023). Modern approaches to the monitoring of biodiversity (MAMBO). RIO Journal of Research and Innovation, 10(1). https://doi.org/10.3897/rio.9.e116951
Iannace, G., Trematerra, A., & Lombardi, I. (2021). Effects of nightlife noise in a city center. Noise Mapping, 8(1), 228–235. https://doi.org/10.1515/noise-2021-0018
Imoize, A. L., Odeyemi, S. D., & Adebisi, J. A. (2020). Development of a low-cost wireless bee-hive temperature and sound monitoring system. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 8(3), Article 3. https://doi.org/10.52549/ijeei.v8i3.2268
Juárez, R. (2023). Ganadería de precisión, una revisión a los avances dentro de la avicultura enfocados a la crianza de pollos de engorde. Prisma Tecnológico, 14(1), 38-48. https://doi.org/10.33412/pri.v14.1.3652
Karar, M., Reyad, O., Abdel-Aty, A.-H., Owyed, S., & Hassan, M. (2021). Intelligent IoT-aided early sound detection of red palm weevils. Computers, Materials & Continua, 69(3), 4095–4111. https://doi.org/10.32604/cmc.2021.019059
Kleanthous, N., Hussain, A., Khan, W., Sneddon, J., & Liatsis, P. (2022). Deep transfer learning in sheep activity recognition using accelerometer data. Expert Systems with Applications, 207, 117925. https://doi.org/10.1016/j.eswa.2022.117925
Klotz, D. F., Ribeiro, R., Enembreck, F., Denardin, G., Barbosa, M., Casanova, D., & Teixeira, M. (2020, agosto 17). Estimating action plans for smart poultry houses. arXiv. https://doi.org/10.48550/arXiv.2008.07356
Krishnan, S., Prasanth, N., Ralphin, J. B., & Rajalakshmi, N. (2022). Cloud IoT systems for smart agricultural engineering. Routledge & CRC Press. https://doi.org/10.1201/9781003185413
Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of things (IoT): A literature review. Journal of Computer and Communications, 3(5), 164-173. https://doi.org/10.4236/jcc.2015.35021
Mahfuz, S., Mun, H.-S., Dilawar, M., & Yang, C.-J. (2022). Applications of smart technology as a sustainable strategy in modern swine farming. Sustainability, 14(5), 2607. https://doi.org/10.3390/su14052607
Márquez Guerrero, C. S. (2019). Internet de las cosas aplicado al sector avícola de Santander (Colombia): Prototipo orientado a una empresa del área metropolitana de Bucaramanga. Universidad Autónoma de Bucaramanga. https://repository.unab.edu.co/handle/20.500.12749/7276
Martinez-Rau, L. S., Chelotti, J. O., Ferrero, M., Galli, J. R., Utsumi, S. A., Planisich, A. M., Rufiner, H. L., & Giovanini, L. L. (2023, agosto 28). A noise-robust acoustic method for recognizing foraging activities of grazing cattle. arXiv. https://doi.org/10.48550/arXiv.2304.14824
Martinez-Rau, L. S., Chelotti, J. O., Ferrero, M., Utsumi, S. A., Planisich, A. M., Vignolo, L. D., Giovanini, L. L., Rufiner, H. L., & Galli, J. R. (2023). Daylong acoustic recordings of grazing and rumination activities in dairy cows. Scientific Data, 10(1), 782. https://doi.org/10.1038/s41597-023-02673-3
Mazon-Olivo, B., & Pan, A. (2022). Internet de las cosas: Estado del arte, paradigmas computacionales y arquitecturas de referencia. IEEE Latin America Transactions, 20(1), Article 1. https://doi.org/10.1109/TLA.2022.9662173
Monta, C., Ayala, P., Cáceres, J., García, C. A., & García, M. (2020). Control difuso de bajo costo para sistemas de calefacción en avícolas. Revista Ibérica de Sistemas e Tecnologias de Informação, N.º E37, 180-193. https://www.proquest.com/openview/af4853282a08b4be33c2bfeb4d8ca239/1?pq-origsite=gscholar&cbl=1006393
Morone, S., Dimauro, C., Gambella, F., & Cappai, M. G. (2022). Industry 4.0 and precision livestock farming (PLF): An up to date overview across animal productions. Sensors, 22(12), 4319. https://doi.org/10.3390/s22124319
Mrozek, D., Górny, R., Wachowicz, A., & Małysiak-Mrozek, B. (2021). Edge-based detection of varroosis in beehives with IoT devices with embedded and TPU-accelerated machine learning. Applied Sciences, 11(22), 11078. https://doi.org/10.3390/app112211078
Mulla Suquisupa, C. A. (2023). Industria 4.0: Inmersión de las empresas españolas en la cuarta revolución industrial. Caso de estudio: Gestamp Smart Factory [Trabajo de fin de grado, Universidad de Valladolid]. UVaDoc. https://uvadoc.uva.es/handle/10324/63614
Neethirajan, S. (2020). Digitalization of Animal Farming. https://doi.org/10.20944/preprints202007.0040.v1
Neethirajan, S. (2022). Affective state recognition in livestock—Artificial intelligence approaches Animals, 12(6), 759. https://doi.org/10.3390/ani12060759
Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensing and Bio-Sensing Research, 32, 100408. https://doi.org/10.1016/j.sbsr.2021.100408
Ngo, H. Q. T., Nguyen, T. P., & Nguyen, H. (2020). Research on a low-cost, open-source, and remote monitoring data collector to predict livestock’s habits based on location and auditory information: A case study from Vietnam. Agriculture, 10(5), 180. https://doi.org/10.3390/agriculture10050180
Odintsov Vaintrub, M., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., & Vignola, G. (2021). Review: Precision livestock farming, automats, and new technologies: Possible applications in extensive dairy sheep farming. Animal: An International Journal of Animal Bioscience, 15(3), 100143. https://doi.org/10.1016/j.animal.2020.100143
Ojo, R. O., Ajayi, A. O., Owolabi, H. A., Oyedele, L. O., & Akanbi, L. A. (2022). Internet of things and machine learning techniques in poultry health and welfare management: A systematic literature review. Computers and Electronics in Agriculture, 200, 107266. https://doi.org/10.1016/j.compag.2022.107266
Pavlíčková, M., Mojžišová, A., & Pócsová, J. (2022). Hoshin Kanri process: A review and bibliometric analysis on the connection of theory and practice. Processes, 10(9), 1854. https://doi.org/10.3390/pr10091854
Prats Rosa, J. (2022). Estudio de una aplicación IoT para diagnóstico de sistemas industriales [Trabajo final de grado, Universitat Politècnica de Catalunya]. UPCommons. https://upcommons.upc.edu/handle/2117/380432
Radhika, R., Shobana, M., Balasaraswathi, V. R., Fancy, C., & Shamala, L. M. (2022). An automated irrigation system with movement and sound detection sensor for crop shielding. In 2022 7th International Conference on Communication and Electronics Systems (ICCES) (pp. 38–44). IEEE. https://doi.org/10.1109/ICCES54183.2022.9835897
Raghu, R., Jayaramaan, V., Jayaraman, J., Nukala, S. S. V., & Montenegro-Marin, C. E. (2022). A user-centered security approach to create an IoT-based multi-layered fog-cloud architecture for data optimization in raised bed farming. International Journal of Safety and Security Engineering, 12(6), 767–776. https://doi.org/10.18280/ijsse.120614
Ritchie, S. M., Young, L. M., & Sigman, J. (2018). Comparison of selected bibliographic database subject overlap for agricultural information. Issues in Science and Technology Librarianship, (89). https://doi.org/10.29173/istl1727
Romaneo, J. (2017). The current global situation and challenges of RPW management programs. En Proceedings of the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management (pp. 85–95). FAO. https://openknowledge.fao.org/server/api/core/bitstreams/8b2c1cb2-1856-47ec-b072-6b74bd38abde/content#page=93
Rotaru, A., Vâtcă, A., Pop, I., & Andronie, L. (2022). Artificial intelligence, a possible solution for agriculture and animal husbandry sector? Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78(2). https://doi.org/10.15835/buasvmcn-asb:2021.0004
Rotz, S., Duncan, E., Small, M., Botschner, J., Dara, R., Mosby, I., Reed, M., & Fraser, E. D. G. (2019). The politics of digital agricultural technologies: A preliminary review. Sociologia Ruralis, 59(2). https://doi.org/10.1111/soru.12233
Schuller, B. W., Akman, A., Chang, Y., Coppock, H., Gebhard, A., Kathan, A., Rituerto-González, E., Triantafyllopoulos, A., & Pokorny, F. B. (2024). Ecology & computer audition: Applications of audio technology to monitor organisms and environment. Heliyon, 10(1), e23142. https://doi.org/10.1016/j.heliyon.2023.e23142
Spanaki, K., Sivarajah, U., Fakhimi, M., Despoudi, S., & Irani, Z. (2022). Disruptive technologies in agricultural operations: A systematic review of AI-driven AgriTech research. Annals of Operations Research, 308(1), 491–524. https://doi.org/10.1007/s10479-020-03922-z
Trujillo Burbano, I. A. (2022). Diseño de una red LoRa que permita la interconexión de sensores inalámbricos en la ciudad de Riobamba bajo el concepto de smart cities [Trabajo de titulación, Escuela Superior Politécnica de Chimborazo]. DSpace ESPOCH. http://dspace.espoch.edu.ec/handle/123456789/20831
Williamson, K., & Johanson, G. (Eds.). (2017). Research methods: Information, systems, and contexts (2ª ed.). Chandos Publishing. https://books.google.co.cr/books?id=GVPXDgAAQBAJ
Zheng, H., Zhang, T., Fang, C., Zeng, J., & Yang, X. (2021). Design and implementation of poultry farming information management system based on cloud database. Animals, 11(3), 900. https://doi.org/10.3390/ani11030900
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Andrés Antonio Calvo Vargas, Camilo José González Fuentes, Gorki Iván Romero Valerio, Sergio Alonso Romero Valverde, Fulvio Lizano Madriz

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Todos los artículos de la Revista Agro se publican bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0).


