Uso agrícola de extractos vegetales nanoencapsulados en el control de fitopatógenos y poscosecha
DOI:
https://doi.org/10.47633/x2m2x827Palabras clave:
agricultura sostenible, biofungicidas, metabolitos vegetales, nanocápsulasResumen
La nanoencapsulación de extractos vegetales emerge como una alternativa innovadora para fortalecer el manejo sostenible de fitopatógenos y mejorar la calidad poscosecha. El objetivo de esta revisión es sintetizar los avances recientes en el uso de nanoformulaciones basadas en compuestos bioactivos de origen vegetal, así como analizar sus mecanismos de acción, beneficios, limitaciones y perspectivas de aplicación en sistemas agrícolas. Para ello, se recopila y examina literatura científica actual y pertinente, priorizando estudios que reportan resultados experimentales, desarrollos tecnológicos y aplicaciones en campo o poscosecha. Los hallazgos muestran que la nanoencapsulación incrementa la estabilidad, biodisponibilidad y eficacia de metabolitos vegetales como fenoles, terpenos y aceites esenciales, al protegerlos frente a degradación ambiental, mejorar su solubilidad y permitir una liberación controlada. Las nanoformulaciones reportan actividades antifúngicas y antibacterianas superiores a sus extractos libres, además de mejores propiedades de adhesión y retención en superficies vegetales. Asimismo, se evidencian ventajas en la conservación poscosecha mediante la reducción de daños fisiológicos y retraso en el desarrollo de patógenos. No obstante, persisten desafíos relacionados con la variabilidad de las formulaciones, los costos de producción, la limitada disponibilidad de estudios de largo plazo sobre ecotoxicidad y destino ambiental y la falta de marcos regulatorios específicos en diversos países. En conclusión, la nanoencapsulación representa una herramienta prometedora para la bioagricultura, capaz de potenciar el valor de los extractos vegetales y contribuir a prácticas más sostenibles, aunque su implementación requiere investigación adicional, estandarización tecnológica y regulación adecuada.
Descargas
Referencias
Referencias
Atanda, S. A. (2025). Nanoparticles in agriculture: Balancing food security and sustainability. Journal of Agricultural Nanotechnology, X(Y), 1–15.
Ayilara, M. S., et al. (2023). Biopesticides as a promising alternative to synthetic pesticides: Benefits and challenges. Environmental Advances, 11, 100355. https://doi.org/10.1016/j.envadv.2023.100355
Barrera-Méndez, J. A., Cárdenas-González, J. F., Zaldívar-Carrillo, L., Gutiérrez-Martínez, A., Rodríguez-Mendoza, J., & Salazar-Flores, J. (2024). Nanoencapsulation of Piper schlechtendalii extracts using PLGA nanospheres and evaluation of their antifungal stability under UV exposure. Journal of the Mexican Chemical Society, 68(2), Article 1964. https://doi.org/10.29356/jmcs.v68i2.1964
Bouhadi, M. (2025). Nanoparticles for sustainable agriculture: Assessment of benefits and risks. Agronomy, 15(5), 1131. https://doi.org/10.3390/agronomy15051131
Bouttier-Figueroa, D. C., et al. (2023). Síntesis de nanopartículas metálicas usando extractos naturales de plantas: mecanismos y aplicaciones. Biotecnia.
Bundschuh, M., Seitz, F., Rosenfeldt, R. R., & Schulz, R. (2018). Effects of nanoparticles in freshwaters: Risks, mechanisms and knowledge gaps. Environmental Toxicology and Chemistry, 37(5), 1235–1250.
Carvalho, M. E. A., et al. (2022). Plant extracts in agriculture and their applications in the agro-food sector. CAB Reviews, 17, 1–16. https://doi.org/10.1079/PAVSNNR202117028
Cornelis, G., Hund‐Rinke, K., Kuhlbusch, T., van den Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44(24), 2720–2764.
Dávila Costa, J. S., & Romero, C. M. (2025). Nano-biofungicides and bio-nanofungicides: State of the art of innovative tools for controlling resistant phytopathogens. Biophysica, 5(2), 15. https://doi.org/10.3390/biophysica5020015
Fernández, V., & Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences, 28(1–2), 36–68. https://doi.org/10.1080/07352680902743069
Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science, 4, 20. https://doi.org/10.3389/fenvs.2016.00020
Ghosh, S., Solanki, R., Bhatia, D., & Sankaranarayanan, S. (2025). Nanomaterials for delivery of medicinal plant extracts and phytochemicals: Potential applications and future perspectives. Plant Nano Biology, 12, 100161. https://doi.org/10.1016/j.plana.2025.100161
Godlewska-Róża, K., & Ronga, D. (2021). Plant extracts: Importance in sustainable agriculture. Scientia Horticulturae, 289, 110442. https://doi.org/10.1016/j.scienta.2021.110442
Gupta, M., et al. (2023). Plant essential oils as biopesticides: Advances, challenges and prospects. Frontiers in Agronomy, 5, 1178519. https://doi.org/10.3389/fagro.2023.1178519
Guzmán-Robayo, N. M. (2023). Nanoencapsulación: usos y aplicaciones en alimentos y agricultura. Universidad Nacional Abierta y a Distancia.
Han, M., et al. (2024). Plant extracts as biostimulant agents: A promising strategy for crop production under stress conditions. Scientia Horticulturae, 322, 112271. https://doi.org/10.1016/j.scienta.2024.112271
Hernández-Bolaños, P., et al. (2025). Medicinal and aromatic plants as green alternatives for sustainable agriculture. Environmental Sustainability, 8, 1–17. https://doi.org/10.1007/s44279-025-00187-7
Islam, S., et al. (2025). Toxicity and transport of nanoparticles in agriculture: Effects on soil health, crop productivity and food safety. Frontiers in Nanotechnology, 7, 1622228. https://doi.org/10.3389/fnano.2025.1622228
Izuafa, A., Chimbekujwo, K. I., Raji, R. O., Oyewole, O. A., Oyewale, R. O., & Abioye, O. P. (2025). Application of nanoparticles for targeted management of pests, pathogens and disease of plants. Plant Nano Biology, 13, 100177. https://doi.org/10.1016/j.plana.2025.100177
Jayaraj, G., Balasubramaniam, M., Raju, K. (2025). Nanoencapsulation of Agricultural Inputs. In: Al-Khayri, J.M., Anju, T.R., Jain, S.M. (eds) Nanotechnology Applications in Modern Agriculture. Nanotechnology in Plant Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-031-90506-3_3
Kah, M., & Hofmann, T. (2014). Nanopesticide research: Current trends and future priorities. Environment International, 63, 224–235. https://doi.org/10.1016/j.envint.2013.11.015
Kah, M., Tufenkji, N., & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature nanotechnology, 14(6), 532–540. https://doi.org/10.1038/s41565-019-0439-5
Kah, M., Beulke, S., Tiede, K., & Hofmann, T. (2013). Nanopesticides: State of knowledge, environmental fate and exposure modelling. Critical Reviews in Environmental Science and Technology, 43(16), 1823–1867.
Kapustová, M., Granata, G., Napoli, E., Puškárová, A., Bučková, M., Pangallo, D., & Geraci, C. (2021). Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields. Antibiotics, 10(1), 31. https://doi.org/10.3390/antibiotics10010031
Kariyanna, B., & Sowjanya, M. (2025). Unravelling the use of nanotechnology for crop pest management as a green and sustainable agriculture. Journal of Basic and Applied Zoology, 86, 51. https://doi.org/10.1186/s41936-025-00459-0
Mendes, R., de Freitas Melo, G., & Barcelos, J. (2023). Regulatory challenges for nanotechnology-based agrochemicals in Latin America. Journal of Environmental Management, 336, 117651.
Mishra, S., Keswani, C., Abhilash, P. C., Fraceto, L. F., & Singh, H. B. (2022). Integrated approach of agri-nanotechnology: Challenges and future prospects. Environmental Science and Pollution Research, 29(6), 8209–8236. https://doi.org/10.1007/s11356-021-15905-7
Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483. https://doi.org/10.1021/acs.jafc.5b05214
Ortega-Cerrilla, M. E., et al. (2017). Micro y nanoencapsulación en sistemas biológicos y agrícolas. Revista Agroproductividad.
Pagano, M. (2025). Advancements in agricultural nanotechnology. Plants, 14(18), 2939. https://doi.org/10.3390/plants14182939
Pateiro, M., Gómez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules (Basel, Switzerland), 26(6), 1547. https://doi.org/10.3390/molecules26061547
Pérez-de-Luque, A., & Hermosín, M. C. (2013). Nanotechnology and its use in agriculture. Spanish Journal of Agricultural Research, 11(4), 847–866. https://doi.org/10.5424/sjar/2013114-4844
Peixoto, M. et al. (2023). Environmental risks of nanomaterials in agriculture: Gaps and future directions. Science of the Total Environment, 856, 159–184.
Prasad, R., et al. (2017). Nanotechnology in sustainable agriculture: Prospects and challenges. Frontiers in Microbiology, 8, 1014.
Sabourin, V., Foladori, G., & González, M. (2022). Nanoagroquímicos en América Latina: Situación regulatoria y desafíos. Tecnociencia, 24(2), 45–62.
Safta, D. A., Bogdan, C., & Moldovan, M. L. (2022). Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics, 14(5), 991. https://doi.org/10.3390/pharmaceutics14050991
Scorza, F. A. (2023). Pesticide exposure and human health: Toxic legacy. Environmental Health Review, 17(2), 89–110.
Servin, A. D., & White, J. C. (2016). Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact, 1, 9–12.
Shekhar, C., et al. (2024). A systematic review of pesticide exposure and associated risks to human health. Journal of Environmental Toxicology, 18(4), 201–223.
Singh, R., Kumar, V., & Kumar, A. (2023). Ecotoxicological implications of nanopesticides: A review. Chemosphere, 320, 138061.
Suteu, D. (2020). Challenges of utilization of vegetal extracts as natural plant protection products. Applied Sciences, 10(24), 8913. https://doi.org/10.3390/app10248913
Usman, M., Farooq, M., & Wakeel, A. (2020). Nanoparticles in plant systems: Uptake, translocation, accumulation and implications for agriculture. Environmental Science: Nano, 7(6), 1536–1548.
Vega-Vásquez, W., et al. (2020). Nanoencapsulation technologies for agricultural applications. Journal of Controlled Release, 328, 732–756.
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Raymundo Alejandro Pérez Hernández, Hilda Amelia Piñón Castillo, David Gilberto García Hernández, David Mizael Ortiz Martínez, Aldo Rodrigo González Luna, Abelardo Chávez Montes, Karina Lizeth Estrada Platas, Juanita Guadalupe Gutiérrez Soto

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Todos los artículos de la Revista Agro se publican bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0).


