Comprehensive Valorization of Pineapple Cultivation Residues for High-Value Products: A Global Perspective Review
DOI:
https://doi.org/10.47633/zhp44522Keywords:
agro-industrial innovation, circular economy, pineapple waste, sustainable agroindustry , waste valorizationAbstract
Pineapple cultivation generates significant agro-industrial residues, such as peels, crowns, cores, and stubble, which are often discarded despite their potential as valuable raw materials. This review aims to provide a comprehensive assessment of the sustainable valorization of these residues through emerging bio-based technologies. The objective is to critically examine the scientific evidence on their transformation into high-value products in renewable energy, agriculture, bioplastics, and nutraceuticals. Methodologically, this review analyses peer-reviewed literature recently published, selected from academic databases, with emphasis on studies from tropical regions in Asia, Latina America, and Africa. Selection criteria included technological feasibility, environmental relevance, and consistency with circular bioeconomy principles. Results show that pineapple residues, rich in lignocellulosic fibers, sugars, and bioactive compounds, can be converted into bioethanol, biogas, hydrogen, bioplastics, natural dyes, and dietary supplements. In agriculture, biochar and organic fertilizers derived from compost enhance soil health, increase crop productivity, and reduce chemical inputs. Pineapple by-products are also valuable for producing biodegradable packaging, textiles, and natural dyes, offering sustainable alternatives to fossil-based materials. Bioactive compounds such as bromelain and antioxidants extracted from pineapple residues have applications in functional foods, pharmaceuticals, and cosmetics. Natural fibers from crowns and peels are utilized in bioplastics and composite materials, advancing circular economy principles and reducing environmental impacts. Despite their potential, challenges such as technology scalability and market integration remain. By transforming agricultural waste into high-value products, the pineapple industry can contribute to economic growth, environmental preservation, and the development of sustainable industries aligned with circular economy goals.
Downloads
References
Abbas, S., Shanbhag, T., & Kothare, A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi Journal of Biological Sciences, 28(1), 1001–1009. https://doi.org/10.1016/j.sjbs.2020.11.032
Abd Rahim, S. H., Zainol, N., & Samad, K. A. (2022). Optimization of chlorophyll extraction from pineapple plantation waste. Heliyon, 8(11), e11851. https://doi.org/10.1016/j.heliyon.2022.e11851
Abidin, A. Z., Steven, S., Fadli, R., Nabiel, M. F., Yemensia, E. V., Soekotjo, E. S. A., Rahman Setiawan, A. A., Sasongko, N. A., Rendra Graha, H. P., Abidin, T., & Putra, R. P. (2024). Influence of several physical parameters in enzymatic fermentation of vegetable and fruit waste to produce organic liquid fertilizer using MASARO technology. Results in Engineering, 23, 102567. https://doi.org/10.1016/j.rineng.2024.102567
Abreu, D. C. A., & Figueiredo, K. C. D. S. (2019). Bromelain separation and purification processes from pineapple extracts. Brazilian Journal of Chemical Engineering, 36(2), 1029–1039. https://doi.org/10.1590/0104-6632.20190362s20180417
Aili Hamzah, A. F., Hamzah, M. H., Che Man, H., Jamali, N. S., Siajam, S. I., & Ismail, M. H. (2021). Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy, 11(11), 2221. https://doi.org/10.3390/agronomy11112221
Akkan, S. (2023). Evaluating the Sustainability of Vegan Leather as an Eco-Friendly and Ethical Alternative to Animal-derived Leather [Master Thesis, School of Management at the Technical University of Munich].
Alejo Jeronimo, M., Arevalo De La Cruz, E. M., Brito-Vega, H., Gomez-Vazquez, A., Salaya-Dominguez, J. M., & Gomez-Mendez, E. (2023). The Production and Marketing Issues of Pineapple (Ananas comosus) under Humid Tropical Conditions in the State of Tabasco and Way-out. In M. Sarwar Khan (Ed.), Tropical Plant Species and Technological Interventions for Improvement. IntechOpen. https://doi.org/10.5772/intechopen.106499
Amores-Monge, V., Goyanes, S., Ribba, L., Lopretti, M., Sandoval-Barrantes, M., Camacho, M., Corrales-Ureña, Y., & Vega-Baudrit, J. R. (2022). Pineapple Agro-Industrial Biomass to Produce Biomedical Applications in a Circular Economy Context in Costa Rica. Polymers, 14(22), 4864. https://doi.org/10.3390/polym14224864
Angulo-López, J. E., Flores-Gallegos, A. C., Ascacio-Valdes, J. A., Contreras Esquivel, J. C., Torres-León, C., Rúelas-Chácon, X., & Aguilar, C. N. (2022). Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods, 12(1), 159. https://doi.org/10.3390/foods12010159
Areti, H. A., Muleta, M. D., Abo, L. D., Hamda, A. S., Adugna, A. A., Edae, I. T., Daba, B. J., & Gudeta, R. L. (2024). Innovative uses of agricultural by-products in the food and beverage sector: A review. Food Chemistry Advances, 5, 100838. https://doi.org/10.1016/j.focha.2024.100838
Aruldass, C. A., Rubiyatno, R., Venil, C. K., & Ahmad, W. A. (2015). Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Advances, 5(64), 51524–51536. https://doi.org/10.1039/c5ra05765e
Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., & Hoque, M. E. (2015). A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 950567. https://doi.org/10.1155/2015/950567
Asoba, G. N., Metuge, S., Ning, T. R., & Symbele, I. (2023). Hand-made paper produced from pineapple leaves (Ananas comosus) as a potential material for food packaging. Journal of Tertiary and Industrial Sciences, 3(1), 65–80. https://jtis-htttcubuea.com/wp-content/uploads/2024/04/Dr-ASOBA.pdf
Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. Energies, 14(18), 5687. https://doi.org/10.3390/en14185687
Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson, R. M., Uthman, Q. O., & Babalola, O. O. (2023). Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology, 14, 1040901. https://doi.org/10.3389/fmicb.2023.1040901
Bampidis, V., Azimonti, G., de Lourdes Bastos, M., Christensen, H., Dusemund, B., Kos Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Bories, G., … Aquilina, G. (2020). Safety and efficacy of microcrystalline cellulose for all animal species. EFSA Journal, 18(7), 6209. https://doi.org/10.2903/j.efsa.2020.6209
Banerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science & Technology, 82, 60–70. https://doi.org/10.1016/j.tifs.2018.09.024
Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702
Bhatia, L., Jha, H., Sarkar, T., & Sarangi, P. K. (2023). Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. International Journal of Environmental Research and Public Health, 20(3), 2318. https://doi.org/10.3390/ijerph20032318
Bohari, N., Mohidin, H., Idris, J., Andou, Y., Man, S., Saidan, H., & Mahdian, S. (2020). Nutritional characteristics of biochar from pineapple leaf residue and sago waste. Pertanika Journal Science & Technology, 28(S2), 273–286. https://doi.org/10.47836/pjst.28.S2.21
Camacho, M., Corrales, Y. R., Lopretti, M., Bustamante, L., Moreno, G., Alfaro, B., & Vega-Baudrit, J. R. (2017). Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. Journal of Renewable Materials, 5, 3–4. https://doi.org/10.7569/JMR.2017.634117
Campos, D. A., Coscueta, E. R., Vilas-Boas, A. A., Silva, S., Teixeira, J. A., Pastrana, L. M., & Pintado, M. M. (2020). Impact of functional flours from pineapple by-products on human intestinal microbiota. Journal of Functional Foods, 67, 103830. https://doi.org/10.1016/j.jff.2020.1038
Casabar, J. T., Unpaprom, Y., & Ramaraj, R. (2019). Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 9(4), 761–765. https://doi.org/10.1007/s13399-019-00436-y
Chaerunisaa, A. Y., Sriwidodo, S., Abdassah, M., Chaerunisaa, A. Y., Sriwidodo, S., & Abdassah, M. (2019). Microcrystalline Cellulose as Pharmaceutical Excipient. In U. Ahmad, & J. Akhtar (Eds.), Pharmaceutical Formulation Design—Recent Practices. IntechOpen. https://doi.org/10.5772/intechopen.88092
Chakraborty, A. J., Mitra, S., Tallei, T. E., Tareq, A. M., Nainu, F., Cicia, D., Dhama, K., Emran, T. B., Simal-Gandara, J., & Capasso, R. (2021). Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life, 11(4), 317. https://doi.org/10.3390/life11040317
Chaves, D. M., Araújo, J. C., Gomes, C. V., Gonçalves, S. P., Fangueiro, R., & Ferreira, D. P. (2024). Extraction, characterization and properties evaluation of pineapple leaf fibers from Azores pineapple. Heliyon, 10(4), e26698. https://doi.org/10.1016/j.heliyon.2024.e26698
Chintagunta, A. D., Ray, S., & Banerjee, R. (2017). An integrated bioprocess for bioethanol and biomanure production from pineapple leaf waste. Journal of Cleaner Production, 165, 1508–1516. https://doi.org/10.1016/j.jclepro.2017.07.17
Chong, C. W., Liew, M. S., Ooi, W., Jamil, H., Lim, A., Hooi, S. L., Tay, C. S. C., & Tan, G. (2024). Effect of green banana and pineapple fibre powder consumption on host gut microbiome. Frontiers in Nutrition, 11, 1437645. https://doi.org/10.3389/fnut.2024.1437645
Choquecahua Mamani, D., Otero Nole, K. S., Chaparro Montoya, E. E., Mayta Huiza, D. A., Pastrana Alta, R. Y., & Aguilar Vitorino, H. (2020). Minimizing organic waste generated by pineapple crown: A simple process to obtain cellulose for the preparation of recyclable containers. Recycling, 5(4), 24. https://doi.org/10.3390/recycling5040024
Damasceno, K., Alvarenga Gonçalves, C. A., Dos Santos Pereira, G., Lacerda Costa, L., Bastianello Campagnol, P. C., Leal De Almeida, P., & Arantes-Pereira, L. (2016). Development of Cereal Bars Containing Pineapple Peel Flour (Ananas comosus L. Merril). Journal of Food Quality, 39(5), 417–424. https://doi.org/10.1111/jfq.12222
Dhanda, V., Arsalan, S., Shubham, & Kaushal, S. (2024). Revolutionizing material: The rise of bio leather as eco-friendly and sustainable approach. International Journal of Research in Agronomy, 7(11), 121–128. https://doi.org/10.33545/2618060X.2024.v7.i11b.1954
Eixemberg, D., Carballo-Arce, A. F., Vega-Baudrit, J. R., Trimino-Vásquez, H., Villegas-Peñaranda, L. R., Stöbener, A., Aguilar, F., Mora-Villalobos, J. A., Sandoval-Barrantes, M., Bubenheim, P., & Liese, A. (2024). Tropical agroindustrial biowaste revalorization through integrative biorefineries. Review Part II: pineapple, sugarcane and banana by-products in Costa Rica. Biomass Conversion and Biorefinery, 14, 4391-4418. https://doi.org/10.1007/s13399-022-02721-9
Fact. MR. (2024). Bromelain Market (FACT9158MR. Food & Beverage). Market Research Survey. https://www.factmr.com/report/bromelain-market
FAOSTAT (2024). Crops and Livestocks Products. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL
Fernandes Pereira, P. H., Ornaghi Junior, H. L., Arantes, V., & Hilário Cioffi, M. O. (2021). Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 499, 108227. https://doi.org/10.1016/j.carres.2020.108227
Figge, F., Thorpe, A. S., & Gutberlet, M. (2023). Definitions of the circular economy: Circularity matters. Ecological Economics, 208, 107823. https://doi.org/10.1016/j.ecolecon.2023.107823
Fissore, A., Marengo, M., Santoro, V., Grillo, G., Oliaro-Bosso, S., Cravotto, G., Dal Piaz, F., & Adinolfi, S. (2023). Extraction and characterization of bromelain from pineapple core: A strategy for pineapple waste valorization. Processes, 11(7), 2064. https://doi.org/10.3390/pr11072064
Fitriani, F., Aprilia, S., Arahman, N., Bilad, M. R., Suhaimi, H., & Huda, N. (2021a). Properties of biocomposite film based on whey protein isolate filled with nanocrystalline cellulose from pineapple crown leaf. Polymers, 13(24), 4278. https://doi.org/10.3390/polym13244278
Fitriani, F., Aprilia, S., Arahman, N., Bilad, M. R., Amin, A., Huda, N., & Roslan, J. (2021b). Isolation and characterization of nanocrystalline cellulose isolated from pineapple crown leaf fiber agricultural wastes using acid hydrolysis. Polymers, 13(23), 4188. https://doi.org/10.3390/polym13234188
Fitriani, Aprilia, N. A. S., & Arahman, N. (2020). Properties of nanocrystalline cellulose from pineapple crown leaf waste. IOP Conference Series: Materials Science and Engineering, 796, 012007. https://doi.org/10.1088/1757-899x/796/1/012007
Fouda-Mbanga, B. G., & Tywabi-Ngeva, Z. (2022). Application of pineapple waste to the removal of toxic contaminants: A review. Toxics, 10(10), 561. https://doi.org/10.3390/toxics10100561
Frimpong, K. A., Abban-Baidoo, E., & Marschner, B. (2021). Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil? Heliyon, 7(5), e09089. https://doi.org/10.1016/j.heliyon.2021.e07089
García-Villegas, A., Rojas-García, A., Villegas-Aguilar, M. del C., Fernández-Moreno, P., Fernández-Ochoa, Á., Cádiz-Gurrea, M. de la L., Arráez-Román, D., & Segura-Carretero, A. (2022). Cosmeceutical potential of major tropical and subtropical fruit by-products for a sustainable revalorization. Antioxidants, 11(2), 203. https://doi.org/10.3390/antiox11020203
Gomes dos Reis, C., Feitosa de Figueirêdo, R. M., de Melo Queiroz, A. J., Ferreira Paiva, Y., Santos Amadeu, L. T., Suelia dos Santos, F., de Lima Ferreira, J. P., Bezerra de Lima, T. L., Santos Andrade, F., Palmeira Gomes, J., Pereira da Silva, W., & da Costa Santos, D. (2023). Pineapple peel flours: Drying kinetics, thermodynamic properties, and physicochemical characterization. Processes, 11(11), 3161. https://doi.org/10.3390/pr11113161
Gunawardena, M. A., & Lokupitiya, E. (2024). Comparison of conventionally and organically grown pineapple in Sri Lanka: An integrative approach applying life cycle assessment and externalities. Cleaner Environmental Systems, 14, 100219. https://doi.org/10.1016/j.cesys.2024.100219
Gupta, M. (2022). Pineapple waste utilization: wealth from waste. The Pharma Innovation Journal, SP-11(6), 1971–1978. https://www.thepharmajournal.com/archives/2022/vol11issue6S/PartY/S-11-6-101-345.pdf
Gupta, R. K., Ali, E. A., El Gawad, F. A., Daood, V. M., Sabry, H., Karunanithi, S., & Srivastav, P. P. (2024). Valorization of fruits and vegetables waste byproducts for development of sustainable food packaging applications. Waste Management Bulletin, 2(4), 21–40. https://doi.org/10.1016/j.wmb.2024.08.005
Hanyabui, E., Frimpong, K. A., Annor-Frempong, F., & Atiah, K. (2024). Effect of pineapple waste biochar and compost application on the growth and yield of pineapple varieties in Ghana. Frontiers in Agronomy, 6, 1331377. https://doi.org/10.3389/fagro.2024.1331377
Hemung, B. O., Sompholkrang, M., Wongchai, A., Chanshotikul, N., & Ueasin, N. (2022). A study of the potential of by-products from pineapple processing in Thailand: Review article. International Journal of Health Sciences, 6(S4), 12605-12615. https://doi.org/10.53730/ijhs.v6nS4.12131
Hernández Pérez, R., Álvarez Castillo, A., Olarte Paredes, A., & Salgado Delgado, A. M. (2023). Obtención de nanocelulosa a partir de residuos postcosecha. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(30), 1e-47e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69662
Hikal, W. M., Said-Al, H., Tkachenko, K. G., Bratovcic, A., Szczepanek, M., & Maldonado, R. (2022). Sustainable and environmentally friendly essential oils extracted from pineapple waste. Biointerface Research in Applied Chemistry, 12(5), 6833–6844. https://doi.org/10.33263/BRIAC125.68336844
Ibrahim, M. F., Mohamad, N., Fairus, M. J. M., Jenol, M. A., & Abd-Aziz, S. (2024). Essential Oil from Pineapple Wastes. In S. Abd-Aziz, M. Gozan, M.F. Ibrahim & L.Y. Phang (Eds.), Chemical Substitutes from Agricultural and Industrial By-Products (pp. 103–121). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527841141.ch6
Idayanti, R. W., Arifin, A., Purbowati, E., & Purnomoadi, A. (2021). Utilization of pineapple waste as a roughage source diets for ruminant: A review. Advances in Biological Sciences Research, 20. https://doi.org/0.2991/absr.k.220309.026
Jalil, A. J., Mahmood, S., Rashid, A. H. A., Nasir, S. H., Ibrahim, S. A., & Ahmad, M. R. (2018). Extraction of eco-friendly natural dyes from piña leaves and their application on wool fabrics. International Journal of Engineering and Technology, 7(4.14), 382–386. https://doi.org/10.14419/ijet.v7i4.14.27689
Jawaid, M., Asim, M., Tahir, P., & Nasir, M. (Eds). (2020). Pineapple leaf fibers: Processing, properties, and applications. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-1416-6
Jehan, O. S., Sanusi, S. N. A., Sukor, M. Z., Noraini, M., Buddin, M. M. H. S., & Hamid, K. H. K. (2017). Biogas production from pineapple core. A preliminary study. AIP Conference Proceedings, 1885, 020246. https://doi.org/10.1063/1.5002440
Jose, M., Himashree, P., Sengar, A. S., & Sunil, C. K. (2022). Valorization of Food industry by-product (pineapple Pomace): A study to evaluate its effect on physicochemical and textural properties of developed cookies. Measurement: Food, 6, 100031. https://doi.org/10.1016/j.meafoo.2022.100031
Kabir, E., Kim, K.-H., & Kwon, E. E. (2023). Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 11, 1324533. https://doi.org/10.3389/fenvs.2023.1324533
Kabiri, S. (2024). Basket of Regenerative Agriculture Technologies for the Improvement of Soil Health in Africa. 50 Technologies for On-farm Demonstrations. Sasakawa Africa Association. https://www.saa-safe.org/news/news.php?nt=1&vid=635&lng=usa
Kainth, S., Sharma, P., & Pandey, O. P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19, 100562. https://doi.org/10.1016/j.apsadv.2023.100562
Kamaruddin, N. F. H., Adam, S., & Boll Kassim, N. Q. (2023). The effects of different pineapple waste on soil chemical properties and growth and yield of Okra (Abelmoschus esculentus L.). IOP Conference Series: Earth and Environmental Science, 1182(1), 012036. https://doi.org/10.1088/1755-1315/1182/1/012036
Kansakar, U., Trimarco, V., Manzi, M. V., Cervi, E., Mone, P., & Santulli, G. (2024). Exploring the therapeutic potential of bromelain: Applications, benefits, and mechanisms. Nutrients, 16(13), 2060. https://doi.org/10.3390/nu16132060
Khan, F., Hossain, N., Hasan, F., Rahman, S. M. M., Khan, S., Saifullah, A. Z. A., & Chowdhury, M. A. (2024a). Advances of natural fiber composites in diverse engineering applications—A review. Applications in Engineering Science, 18, 100184. https://doi.org/10.1016/j.apples.2024.100184
Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., Gul, S., Wahid, M. A., Hashem, A., Allah, A. E. F., & Ibrar, D. (2024b). Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), 166. https://doi.org/10.3390/plants13020166
Kirchherr, J., Yang, N. H. N., Schulze-Spüntrup, F., Heerink, M. J., & Hartley, K. (2023). Conceptualizing the circular economy (revisited): An analysis of 221 definitions. Resources, Conservation and Recycling, 194, 107001. https://doi.org/10.1016/j.resconrec.2023.107001
Kolaczkowski, S. T., Willacy, P., Jones, M. D.J., & Pugh, M. (2023). Separating hydrogen from syngas (produced from the gasification of waste) using pressure swing adsorption methodology and results. Chemical Engineering Transactions, 105, 91–96. https://doi.org/10.3303/CET23105016
Kumar, J., Kumar, A., Maurya, A. K., Gupta, H. S., Singh, S. P., & Sharma, C. (2024). Utilization of Ananas comosus Crown residue husk as a sustainable strength additive for EPR/LDPE blend composites. ACS Omega, 9(2), 2740–2751. https://doi.org/10.1021/acsomega.3c07697
Lalhruaitluangi, N., & Mandal, D. (2024). Medicinal and nutritional characteristics of pineapple in human health: A review. Journal of Postharvest Technology, 12(2), 1–13. https://doi.org/10.48165/jpht.2024.12.2.01
Layek, J., Narzari, R., Hazarika, S., Das, A., Rangappa, K., Devi, S., Balusamy, A., Saha, S., Mandal, S., Idapuganti, R. G., Babu, S., Choudhury, B. U., & Mishra, V. K. (2022). Prospects of biochar for sustainable agriculture and carbon sequestration: An overview for eastern Himalayas. Sustainability, 14(11), 6684. https://doi.org/10.3390/su14116684
Li, N., Wang, Q., Zhou, J., Li, S., Liu, J., & Chen, H. (2022). Insight into the progress on natural dyes: Sources, structural features, health effects, challenges, and potential. Molecules, 27(10), 3291. https://doi.org/10.3390/molecules27103291
Linh, N. T., Qui, N. H., Tai, L. T., Ngan, V. T. N., Thinh, N. P., & Huyen, T. N. (2024). The Effects of pineapple leaf powder on growth performance and carcass traits of Noi crossbred broilers. International Journal of Life Science and Agriculture Research, 3(5), 339–345. https://doi.org/10.55677/ijlsar/V03I5Y2024-02
Locci, C., Chicconi, E., & Antonucci, R. (2024). Current uses of bromelain in children: A narrative review. Children, 11(3), 377. https://doi.org/10.3390/children11030377
López-Núñez, J. S., Salcedo-Mendoza, J. G., Arteaga-Márquez, M. R., & Pérez-Sierra, O. A. (2018). Effect of drying on the physicochemical and techno-functional properties of pineapple peel flour. Indian Journal of Science and Technology, 11(46), 1–7. https://doi.org/10.17485/ijst/2018/v11i46/137450
Lourenço, S. C., Campos, D. A., Gómez-García, R., Pintado, M., Oliveira, M. C., Santos, D. I., Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2021). Optimization of natural antioxidants extraction from pineapple peel and their stabilization by spray drying. Foods, 10(6), 1255. https://doi.org/10.3390/foods10061255
Mahatme, S. S., Kanse, N. G., & Bandsode, A. K. (2018). Pulp and paper production from pineapple leaves as a substitute to wood source: A review. International Journal of Creative Research Thoughts, 6(2), 20–26. https://ijcrt.org/papers/IJCRT1813604.pdf
Mala, T., Piayura, S., & Itthivadhanapong, P. (2024). Characterization of dried pineapple (Ananas comosus L.) peel powder and its application as a novel functional food ingredient in cracker product. Future Foods, 9, 100322. https://doi.org/10.1016/j.fufo.2024.100322
Málaga, J. A., & Velázquez, P. (2020). Obtención de fibra de rastrojo de la cosecha de piña (Ananas comosus L.) y su caracterización como alternativa para elaborar papel. Investigación, 28(1), 223–229. https://doi.org/10.51440/unsch.revistainvestigacion.28.1.2020.375
Malik, F. R., Yuan, H. B., Moran, J. C., & Tippayawong, N. (2023). Overview of hydrogen production technologies for fuel cell utilization. Engineering Science and Technology, an International Journal, 43, 101452. https://doi.org/10.1016/j.jestch.2023.101452
Manzoor, Z., Nawaz, A., Mukhtar, H., & Haq, I. (2016). Bromelain: Methods of Extraction, Purification and Therapeutic Applications. Brazilian Archives of Biology and Technology, 59, e16150010. https://doi.org/10.1590/1678-4324-2016150010
Meena, L., Sengar, A. S., Neog, R., & Sunil, C. K. (2022). Pineapple processing waste (PPW): Bioactive compounds, their extraction, and utilisation: a review. Journal of Food Science and Technology, 59(11), 4152–4164. https://doi.org/10.1007/s13197-021-05271-6
Mehraj, M., Das, S., Feroz, F., Waheed Wani, A., Dar, S. q, Kumar, S., Wani, A. K., & Farid, A. (2024). Nutritional composition and therapeutic potential of pineapple peel – A comprehensive review. Chemistry & Biodiversity, 21(5), e202400315. https://doi.org/10.1002/cbdv.202400315
Mendoza, J. W., Velázquez, P. F., & Gómez, Y. (2020). Caracterización estructural, física y química de la fibra de rastrojo de la cosecha de piña (Ananas comosus) golden como alternativa para elaborar papel. INGENIERÍA INVESTIGA, 2(2), 314–323. https://doi.org/10.47796/ing.v2i2.408
Mgeni, S. T., Mtashobya, L. A., & Emmanuel, J. K. (2024). Bioethanol production from pineapple fruit waste juice using bakery yeast. Heliyon, 10(19), e38172. https://doi.org/10.1016/j.heliyon.2024.e38172
Mishra, K., Siwal, S. S., Sithole, T., Singh, N., Hart, P., & Thakur, V. K. (2024). Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability. Journal of Bioresources and Bioproducts, 9(3), 253–282. https://doi.org/10.1016/j.jobab.2023.12.002
Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics: Review. Journal of Materials Science: Materials in Medicine, 31(6), 50. https://doi.org/10.1007/s10856-020-06390-w
Mkilima, T., Saspugayeva, G., Kaliyeva, G., Samatova, I., Rakhimova, B., Tuleuova, G., Tauyekel, A., Batyayeva, Y., Karibzhanova, R., & Cherkeshova, S. (2024). Enhanced adsorption of emerging contaminants from pharmaceutical wastewater using alkaline-treated pineapple leaf fiber integrated with UV-LED technology. Case Studies in Chemical and Environmental Engineering, 10, 101000. https://doi.org/10.1016/j.cscee.2024.101000
Mohamad, N., Ramli, N., Abd-Aziz, S., & Ibrahim, M. F. (2019). Comparison of hydro-distillation, hydro-distillation with enzyme-assisted and supercritical fluid for the extraction of essential oil from pineapple peels. 3 Biotech, 9(6), 234. https://doi.org/10.1007/s13205-019-1767-8
Mohammadi, H., Ahmad, Z., Mazlan, S. A., Faizal Johari, M. A., Siebert, G., Petrů, M., & Rahimian Koloor, S. S. (2023). Lightweight glass fiber-reinforced polymer composite for automotive bumper applications: A review. Polymers, 15(1), 193. https://doi.org/10.3390/polym15010193
Mohd Ali, M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137, 109675. https://doi.org/10.1016/j.foodres.2020.109675
Moreno, G., Ramírez, K., Esquivel, M., & Jiménez, G. (2017). Isolation and characterization of nanocellulose obtained from industrial crop waste resources by using mild acid hydrolysis. Journal of Renewable Materials, 1–8. https://doi.org/10.7569/JRM.2017.634167
Moya, R., Tenorio, C., Puente-Urbina, A., Rosales-López, C., & Vega-Baudrit, J. R. (2023). Production of paper using biopulping of pineapple leaves fibers (PALF) followed by chemical and xylanase-enzymatic processing. Journal of Natural Fibers, 20(1), 2163025. https://doi.org/10.1080/15440478.2022.2163025
Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815
Naha, A., Debroy, R., Sharma, D., Shah, M. P., & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050
Namphonsane, A., Amornsakchai, T., Chia, C. H., Goh, K. L., Thanawan, S., Wongsagonsup, R., & Smith, S. M. (2023). Development of biodegradable rigid foams from pineapple field waste. Polymers, 15(13), 2895. https://doi.org/10.3390/polym15132895
Nawangsari, P., Fatra, W., Kusuma, A., Badri, M., Dedi Rosa, P. C., & Masnur, D. (2024). Microcellulose from pineapple leaf fiber as a potential sustainable material. Extraction and characterization. Jurnal Polimesin, 22(1). https://doi.org/10.30811/jpl.v22i1
Nordin, L., Sulaiman, R., Bakar, J., & Noranizan, M. A. (2023). Comparison of phenolic and volatile compounds in MD2 pineapple peel and core. Foods, 12, 2233. https://doi.org/10.3390/foods12112233
Omar, A., Ahmad, S., Chen, R. S., & Lamin, F. (2023). Biodegradable pineapple leaf fiber/clay reinforced polylactic acid nanocomposites: Effects of extrusion mixing on tensile and thermal properties. International Journal of Chemical and Biochemical Sciences, 24(7), 236–245. https://www.iscientific.org/wp-content/uploads/2023/12/32-ijcbs-23-24-7-32.pdf
Otieno, E. O., Kiplimo, R., & Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon, 9(3), e14041. https://doi.org/10.1016/j.heliyon.2023.e14041
Paz-Arteaga, S. L., Cadena-Chamorro, E., Gómez-García, R., Serna-Cock, L., Aguilar, C. N., & Torres-León, C. (2024). Unraveling the valorization potential of pineapple waste to obtain value-added products towards a sustainable circular bioeconomy. Sustainability, 16(16), 7236. https://doi.org/10.3390/su16167236
Polania Rivera, A. M., Ramírez Toro, C., Londoño, L., Bolivar, G., Ascacio, J. A., & Aguilar, C. N. (2023). Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. Journal of Food Measurement and Characterization, 17(1), 586–606. https://doi.org/10.1007/s11694-022-01627-4
Rabiu, Z., Maigari, F. U., Lawan, U., & Mukhtar, Z. G. (2018). Chapter 11. Pineapple waste utilization as a sustainable means of waste management. In: Z. A. Zakaria (ed.) Sustainable Technologies for the Management of Agricultural Wastes, Applied Environmental Science and Engineering for a Sustainable Future. https://doi.org/10.1007/978-981-10-5062-6_11
Rahman, M. M., & Yang, D. K. (2018). Effects of Ananas comosus leaf powder on broiler performance, haematology, biochemistry, and gut microbial population. Revista Brasileira de Zootecnia, 47, e20170064. https://doi.org/10.1590/rbz4720170064
Ramli, S. N. R., Fadzullah, S. H. S. M., & Mustafa, Z. (2017). The effect of alkaline treatment and fibre length on pineapple leaf fibre reinforced poly lactic acid biocomposites. Jurnal Teknologi, 79(4-2), 111–115. https://journals.utm.my/jurnalteknologi/article/view/11293/6182
Roda, A., & Lambri, M. (2019). Food uses of pineapple waste and by-products: A review. International Journal of Food Science and Technology, 54(4), 1009–1017. https://doi.org/10.1111/ijfs.14128
Rodsamran, P., & Sothornvit, R. (2019). Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food and Bioproducts Processing, 118, 198–206. https://doi.org/10.1016/j.fbp.2019.09.010
Rojas-Flores, S., Nazario-Naveda, R., Benites, S. M., Callozo-Caedenas, M., Delfín-Narciso, D., & Díaz, F. (2022). Use of pineapple waste as fuel in microbial fuel cell for the generation of bioelectricity. Molecules, 27(21), 7389. https://doi.org/10.3390/molecules27217389
Roskan, N. F., Zainol, N., & Samad, K. A. (2022). Chlorophyll extraction from pineapple plantation waste through mechanical extraction. Biocatalysis and Agricultural Biotechnology, 39, 102264. https://doi.org/10.1016/j.bcab.2021.102264
Saberi Riseh, R., Gholizadeh Vazvani, M., Hassanisaadi, M., & Kumar Thakur, V. (2024). Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Industrial Crops and Products, 208, 117904. https://doi.org/10.1016/j.indcrop.2023.117904
Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. Journal of Food Science and Technology, 53(3), 1698–1708. https://doi.org/10.1007/s13197-015-2100-0
Saini, R., Singhania, R. R., Chen, C. W., Patel, K., Saini, J. K., Singh, C., & Dong, C.D. (2023). Pineapple leaves waste. A potential feedstock for production of value-added products in biorefinery. Indian Journal of Experimental Biology, 61(10), 729–738. https://doi.org/10.56042/ijeb.v61i10.1795
Salve, R., & Ray, S. (2020). Comprehensive study of different extraction methods of extracting bioactive compounds from pineapple waste. A review. The Pharma Innovation Journal, 9(6), 327–340. https://www.thepharmajournal.com/archives/2020/vol9issue6/PartE/9-5-77-110.pdf
Santos, S. M., Assis, A. C., Gomes, L., Nobre, C., & Brito, P. (2023). Waste gasification technologies: A brief overview. Waste, 1(1), 140–165. https://doi.org/10.3390/waste1010011
Santulli, C., Palanisamy, S., & Kalimuthu, M. (2022). Chapter 14. Pineapple fibers, their composites and applications. In S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, T. Ozbakkaloglu, & H. Wang (Eds.), Plant Fibers, their Composites, and Applications (pp. 323–346). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824528-6.00007-2
Sarangi, P. K., Singh, A. K., Srivastava, R. K., & Gupta, V. K. (2023). Recent progress and future perspectives for zero agriculture waste technologies: Pineapple waste as a case study. Sustainability, 15(4), 3575. https://doi.org/10.3390/su15043575
Sarkic, A., & Stappen, I. (2018). Essential oils and their single compounds in cosmetics. A critical review. Cosmetics, 5(1), 11. https://doi.org/10.3390/cosmetics5010011
Seenak, P., Kumphune, S., Malakul, W., Chotima, R., & Nernpermpisooth, N. (2021). Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutrition & Metabolism, 18(36), 1–10. https://doi.org/10.1186/s12986-021-00566-z
Sethupathi, M., Khumalo, M. V., Skosana, S. J., & Muniyasamy, S. (2024). Recent developments of pineapple leaf fiber (PALF) utilization in the polymer composites. A review. Separations, 11(8), 245. https://doi.org/10.3390/separations11080245
Shimavathi, C. S., Gunaseelan, S., Soosai, M. R., Vignesh, N. S., Varalakshmi, P., Kumar, R. S., Karthikumar, S., Kumar, R. V., Baskar, R.; Rigby, S. P., Syed, A., Elgorban, A. M., & Moorthy, I.M.G. (2022). Process optimization and characterization of pectin derived from underexploited pineapple peel biowaste as a value-added product. Food Hydrocolloids, 123, 107141. https://doi.org/10.1016/j.foodhyd.2021.107141
Shoudho, K. N., Khan, T. H., Ara, U. R., Khan, M. R., Shawon, Z. B. Z., & Hoque, M. E. (2024). Biochar in global carbon cycle: Towards sustainable development goals. Current Research in Green and Sustainable Chemistry, 8, 100409. https://doi.org/10.1016/j.crgsc.2024.100409
Singh, A. K., Pal, P., Rathore, S. S., Sahoo, U. K., Sarangi, P. K., Prus, P., & Dziekański, P. (2023). Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements. Energies, 16(14), 5409. https://doi.org/10.3390/en16145409
Soares-Faria, L. U., Soares-Pacheco, B. J., Couto-Oliveira, G., & Lacerda-Silva, J. (2020). Production of cellulose nanocrystals from pineapple Crown fibers through alkaline pretreatment and acid hydrolysis under different conditions. Journal of Materials Research and Technology, 9(6), 12346–12353. https://doi.org/10.1016/j.jmrt.2020.08.093
Soomro, M. A., Khan, S., Majid, A., Bhatti, S., Perveen, S., & Phull, A. R. (2024). Pectin as a biofunctional food: Comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. Discover Applied Sciences, 6(6), 298. https://doi.org/10.1007/s42452-024-05968-1
Sossa, E. L., Agbangba, C. E., Koura, T. W., Ayifimi, O. J., Houssoukpèvi, I. A., Bouko, N. D. B., Yalinkpon, F., & Amadji, G. L. (2024). Dynamics of co-composting of pineapple harvest and processing residues with poultry litter and compost quality. Nature Portfolios: Scientific Reports, 14(1), 17194. https://doi.org/10.1038/s41598-024-66335-z
Srikhaow, A., Win, E. E., Amornsakchai, T., Kiatsiriroat, T., Kajitvichyanukul, P., & Smith, S. M. (2023). Biochar Derived from Pineapple Leaf Non-Fibrous Materials and Its Adsorption Capability for Pesticides. ACS Omega, 8(29), 26147–26157. https://doi.org/10.1021/acsomega.3c02328
Statista. (2023). Leading countries in pineapple production worldwide in 2022. Agriculture. Farming. https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/
Sukri, S. A. M., Andu Y., Sarijan, S., Khalid, H. N. M., Zulhisyam Abdul, K., Harun, H. C., Rusli, N. D., Mat, K., Khalif, R. I. A. R., Wei, L. S., Rahman, M. M., Hakim, A. H., Lokman, N. H. N., Hamid, N. K. A., Khoo, M. I., & Van Doan, H. (2023). Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. Annals of Animal Science, 23(2), 339–352. https://doi.org/10.2478/aoas-2022-0080
Sukri, S. A. M., Andu, Y., Tuan Harith, Z. T., Sarijan, S., Naim Firdaus Pauzi, M., Wei, L. S., Dawood, M. A. O., & Zulhisyam Abdul, K. (2022). Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) fingerlings. Saudi Journal of Biological Sciences, 29(4), 2514–2519. https://doi.org/10.1016/j.sjbs.2021.12.027
Sukruansuwan, V., & Napathorn, S. C. (2018). Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels, 11(1), 202. https://doi.org/10.1186/s13068-018-1207-8
Tan, M., Zhong, X., Xue, H., Cao, Y., Tan, G., & Li, K. (2024). Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. International Journal of Biological Macromolecules, 279, 135192. https://doi.org/10.1016/j.ijbiomac.2024.135192
Tripathi, A. (2023). Application of crude leaf extracts of pineapple in pest control of field collected insects. International Journal of Fauna and Biological Studies, 10(04), 55-59. https://www.faunajournal.com/archives/2023/vol10issue4/PartA/10-5-5-525.pdf
Uma Devi, L.; Bhagawan, S. S. & Thomas, S. (2012). Polyester composites of short pineapple fiber and glass fiber: Tensile and impact properties. Polymer Composites, 33(7), 1064–1070. https://doi.org/10.1002/pc.22217
Umesh, M., Suresh, S., Santosh, A. S., Prasad, S., Chinnathambi, A., Al Obaid, S., Jhanani, G. K., & Shanmugam, S. (2023). Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environmental Research, 229, 115973. https://doi.org/10.1016/j.envres.2023.115973
Unnikrishnan, G., & Ramasamy, V. (2022). Anaerobic digestion of pineapple waste for biogas production and application of slurry as liquid fertilizer carrier for phosphate solubilizers. Indian Journal of Agricultural Research, 56(4), 408–414. https://doi.org/10.18805/IJARe.A-5777
Valdés García, A., Domingo Martínez, M. I., Ponce Landete, M., Prats Moya, M. S., & Beltrán Sanahuja, A. (2021). Potential of Industrial Pineapple (Ananas comosus (L.) Merrill) By-Products as Aromatic and Antioxidant Sources. Antioxidants, 10(11), 1767. https://doi.org/10.3390/antiox10111767
Van Doan, H., Hoseinifar, S. H., Harikrishnan, R., Khamlor, T., Punyatong, M., Tapingkae, W., Yousefi, M., Palma, J., & El-Haroun, E. (2021). Impacts of pineapple peel powder on growth performance, innate immunity, disease resistance, and relative immune gene expression of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 114, 311–319. https://doi.org/10.1016/j.fsi.2021.04.002
Vargas-Vargas, M. A., Hernández-Chaverri, R. A., & Jiménez-Silva, A. (2019). Caracterización de la biomasa de piña (Ananas comosus) y su valoración en la propagación micelial del hongo shiitake (Lentinula edodes). Yulök Revista de Innovación Académica, 3(1), 13–27. https://doi.org/10.47633/yulk.v3i1
Varilla, C., Marcone, M., Paiva, L., & Baptista, J. (2021). Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods, 10(10), 2249. https://doi.org/10.3390/foods10102249
Varqani, N. A., & Bastian, F. (2023). Review: Utilization of cellulose in food products. IOP Conference Series: Earth and Environmental Science, 1230(1), 012039. https://doi.org/10.1088/1755-1315/1230/1/012039
Vasić, K., Knez, Ž., & Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 26(3), 753. https://doi.org/10.3390/molecules26030753
Velázquez, D., Valverde, J. W., Castañeda, C., López, R. P., Jave, J., & Benites-Alfaro, E. (2021). The ecological paper obtained from Ananas comosus waste as an alternative for use in a circular economy. 19th LACCEI International Multi-Conference for Engineering, Education, and Technology. http://dx.doi.org/10.18687/LACCEI2021.1.1.350
Velázquez, P., & Málaga, J. (2019). Diseño y desarrollo de cuero vegetal a base de los residuos de las fibras de hoja de piña (Ananas comosus) golden del VRAEM. Investigación, 27(1), 131. https://doi.org/10.51440/unsch.revistainvestigacion.2019.1.114
Wagh, M. S., Sowjanya, S., Nath, P. C., Chakraborty, A., Amrit, R., Mishra, B., Mishra, A. K., & Mohanta, Y. K. (2024). Valorization of agro-industrial wastes: Circular bioeconomy and biorefinery process. A sustainable symphony. Process Safety and Environmental Protection, 183, 708-725. https://doi.org/10.1016/j.psep.2024.01.055
Wang, G., Ren, Y., Bai, X., Su, Y., & Han, J. (2022). Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants, 11(23), 3200. https://doi.org/10.3390/plants11233200
Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing Soil Health and Plant Growth through Microbial Fertilizers: Mechanisms, Benefits, and Sustainable Agricultural Practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609
Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21(1), 55–80. https://doi.org/10.1007/s10311-022-01499-6
Yang, X., Liu, L., Tan, W., Liu, C., Dang, Z., & Qiu, G. (2020). Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environmental Pollution, 264, 114745. https://doi.org/10.1016/j.envpol.2020.114745
Yin, H., Song, P., Chen, X., Huang, Q., & Huang, H. (2022). A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material. International Journal of Biological Macromolecules, 221, 1606–1617. https://doi.org/10.1016/j.ijbiomac.2022.09.060
Yousuf, A., Pirozzi, D., & Sannino, F. (2020). Fundamentals of lignocellulosic biomass. In A. Yousuf, D. Pirozzi, & F. Sannino (Eds.), Lignocellulosic Biomass to Liquid Biofuels (pp. 1–15). Elsevier. https://doi.org/10.1016/B978-0-12-815936-1.00001-0
Zúñiga-Martínez, B. S., Domínguez-Ávila, J. A., Robles-Sánchez, R. M., Ayala-Zavala, J. F., Villegas-Ochoa, M. A., & González Aguilar, G. A. (2022). Agro-Industrial fruit byproducts as health-promoting ingredients used to supplement baked food products. Foods, 11, 3181. https://doi.org/10.3390/foods11203181
Published
Issue
Section
License
Copyright (c) 2025 Maynor Alberto Vargas Vargas, Arlette Jiménez Silva

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The Arjé Academic Journal is governed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License, which can be consulted at the following link:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
According to this license, you are free to share, copy, and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms described below:
-
Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial: You may not use the material for commercial purposes.
-
NoDerivatives: If you remix, transform, or build upon the material, you may not distribute the modified material.
-
No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
-
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
-
No warranties are given. The license may not give you all the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.