Valorización integral de los residuos del cultivo de piña para productos de alto valor agregado: una revisión desde una perspectiva global

Autores/as

DOI:

https://doi.org/10.47633/zhp44522

Palabras clave:

agroindustria sostenible, economía circular, innovación agroindustrial, residuos de piña, valorización de residuos

Resumen

El cultivo de la piña genera residuos agroindustriales significativos, como cáscaras, coronas, corazones y rastrojos, que a menudo se descartan a pesar de su potencial como materias primas valiosas. Esta revisión pretende realizar una evaluación integral de la valorización sostenible de estos residuos mediante tecnologías emergentes con fundamento biológico. El objetivo es examinar críticamente la evidencia científica sobre su transformación en productos de alto valor agregado en los sectores de energía renovable, agricultura, bioplásticos y nutracéuticos. Metodológicamente, esta revisión analiza literatura científica revisada por pares y publicada recientemente, seleccionada de bases de datos académicas, con énfasis en estudios realizados en regiones tropicales de Asia, América Latina y África. Los criterios de selección incluyeron viabilidad tecnológica, relevancia ambiental y coherencia con los principios de la bioeconomía circular. Los resultados muestran que los residuos de piña, ricos en fibras lignocelulósicas, azúcares y compuestos bioactivos, pueden convertirse en bioetanol, biogás, hidrógeno, bioplásticos, colorantes naturales y suplementos dietéticos. En agricultura, el biocarbón y los fertilizantes orgánicos a base de compost mejoran la salud del suelo, aumentan la productividad agrícola y reducen el uso de insumos químicos. Los subproductos de la piña también son valiosos para la producción de envases biodegradables, textiles y tintes naturales, ofreciendo alternativas sostenibles a materiales derivados del petróleo. Compuestos bioactivos como la bromelina y los antioxidantes extraídos de los residuos de piña tienen aplicaciones en alimentos funcionales, productos farmacéuticos y cosméticos. Las fibras naturales de coronas y cáscaras se utilizan en bioplásticos y materiales compuestos, promoviendo los principios de la economía circular y reduciendo los impactos ambientales. A pesar de su potencial, persisten desafíos como la escalabilidad tecnológica y la integración en el mercado. Al transformar los residuos agrícolas en productos de alto valor, la industria piñera puede contribuir al crecimiento económico, la preservación ambiental y el desarrollo de industrias sostenibles alineadas con los objetivos de la economía circular. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abbas, S., Shanbhag, T., & Kothare, A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi Journal of Biological Sciences, 28(1), 1001–1009. https://doi.org/10.1016/j.sjbs.2020.11.032

Abd Rahim, S. H., Zainol, N., & Samad, K. A. (2022). Optimization of chlorophyll extraction from pineapple plantation waste. Heliyon, 8(11), e11851. https://doi.org/10.1016/j.heliyon.2022.e11851

Abidin, A. Z., Steven, S., Fadli, R., Nabiel, M. F., Yemensia, E. V., Soekotjo, E. S. A., Rahman Setiawan, A. A., Sasongko, N. A., Rendra Graha, H. P., Abidin, T., & Putra, R. P. (2024). Influence of several physical parameters in enzymatic fermentation of vegetable and fruit waste to produce organic liquid fertilizer using MASARO technology. Results in Engineering, 23, 102567. https://doi.org/10.1016/j.rineng.2024.102567

Abreu, D. C. A., & Figueiredo, K. C. D. S. (2019). Bromelain separation and purification processes from pineapple extracts. Brazilian Journal of Chemical Engineering, 36(2), 1029–1039. https://doi.org/10.1590/0104-6632.20190362s20180417

Aili Hamzah, A. F., Hamzah, M. H., Che Man, H., Jamali, N. S., Siajam, S. I., & Ismail, M. H. (2021). Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy, 11(11), 2221. https://doi.org/10.3390/agronomy11112221

Akkan, S. (2023). Evaluating the Sustainability of Vegan Leather as an Eco-Friendly and Ethical Alternative to Animal-derived Leather [Master Thesis, School of Management at the Technical University of Munich].

Alejo Jeronimo, M., Arevalo De La Cruz, E. M., Brito-Vega, H., Gomez-Vazquez, A., Salaya-Dominguez, J. M., & Gomez-Mendez, E. (2023). The Production and Marketing Issues of Pineapple (Ananas comosus) under Humid Tropical Conditions in the State of Tabasco and Way-out. In M. Sarwar Khan (Ed.), Tropical Plant Species and Technological Interventions for Improvement. IntechOpen. https://doi.org/10.5772/intechopen.106499

Amores-Monge, V., Goyanes, S., Ribba, L., Lopretti, M., Sandoval-Barrantes, M., Camacho, M., Corrales-Ureña, Y., & Vega-Baudrit, J. R. (2022). Pineapple Agro-Industrial Biomass to Produce Biomedical Applications in a Circular Economy Context in Costa Rica. Polymers, 14(22), 4864. https://doi.org/10.3390/polym14224864

Angulo-López, J. E., Flores-Gallegos, A. C., Ascacio-Valdes, J. A., Contreras Esquivel, J. C., Torres-León, C., Rúelas-Chácon, X., & Aguilar, C. N. (2022). Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods, 12(1), 159. https://doi.org/10.3390/foods12010159

Areti, H. A., Muleta, M. D., Abo, L. D., Hamda, A. S., Adugna, A. A., Edae, I. T., Daba, B. J., & Gudeta, R. L. (2024). Innovative uses of agricultural by-products in the food and beverage sector: A review. Food Chemistry Advances, 5, 100838. https://doi.org/10.1016/j.focha.2024.100838

Aruldass, C. A., Rubiyatno, R., Venil, C. K., & Ahmad, W. A. (2015). Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Advances, 5(64), 51524–51536. https://doi.org/10.1039/c5ra05765e

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., & Hoque, M. E. (2015). A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 950567. https://doi.org/10.1155/2015/950567

Asoba, G. N., Metuge, S., Ning, T. R., & Symbele, I. (2023). Hand-made paper produced from pineapple leaves (Ananas comosus) as a potential material for food packaging. Journal of Tertiary and Industrial Sciences, 3(1), 65–80. https://jtis-htttcubuea.com/wp-content/uploads/2024/04/Dr-ASOBA.pdf

Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. Energies, 14(18), 5687. https://doi.org/10.3390/en14185687

Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson, R. M., Uthman, Q. O., & Babalola, O. O. (2023). Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology, 14, 1040901. https://doi.org/10.3389/fmicb.2023.1040901

Bampidis, V., Azimonti, G., de Lourdes Bastos, M., Christensen, H., Dusemund, B., Kos Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Bories, G., … Aquilina, G. (2020). Safety and efficacy of microcrystalline cellulose for all animal species. EFSA Journal, 18(7), 6209. https://doi.org/10.2903/j.efsa.2020.6209

Banerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science & Technology, 82, 60–70. https://doi.org/10.1016/j.tifs.2018.09.024

Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702

Bhatia, L., Jha, H., Sarkar, T., & Sarangi, P. K. (2023). Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. International Journal of Environmental Research and Public Health, 20(3), 2318. https://doi.org/10.3390/ijerph20032318

Bohari, N., Mohidin, H., Idris, J., Andou, Y., Man, S., Saidan, H., & Mahdian, S. (2020). Nutritional characteristics of biochar from pineapple leaf residue and sago waste. Pertanika Journal Science & Technology, 28(S2), 273–286. https://doi.org/10.47836/pjst.28.S2.21

Camacho, M., Corrales, Y. R., Lopretti, M., Bustamante, L., Moreno, G., Alfaro, B., & Vega-Baudrit, J. R. (2017). Synthesis and characterization of nanocrystalline cellulose derived from pineapple peel residues. Journal of Renewable Materials, 5, 3–4. https://doi.org/10.7569/JMR.2017.634117

Campos, D. A., Coscueta, E. R., Vilas-Boas, A. A., Silva, S., Teixeira, J. A., Pastrana, L. M., & Pintado, M. M. (2020). Impact of functional flours from pineapple by-products on human intestinal microbiota. Journal of Functional Foods, 67, 103830. https://doi.org/10.1016/j.jff.2020.1038

Casabar, J. T., Unpaprom, Y., & Ramaraj, R. (2019). Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 9(4), 761–765. https://doi.org/10.1007/s13399-019-00436-y

Chaerunisaa, A. Y., Sriwidodo, S., Abdassah, M., Chaerunisaa, A. Y., Sriwidodo, S., & Abdassah, M. (2019). Microcrystalline Cellulose as Pharmaceutical Excipient. In U. Ahmad, & J. Akhtar (Eds.), Pharmaceutical Formulation Design—Recent Practices. IntechOpen. https://doi.org/10.5772/intechopen.88092

Chakraborty, A. J., Mitra, S., Tallei, T. E., Tareq, A. M., Nainu, F., Cicia, D., Dhama, K., Emran, T. B., Simal-Gandara, J., & Capasso, R. (2021). Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life, 11(4), 317. https://doi.org/10.3390/life11040317

Chaves, D. M., Araújo, J. C., Gomes, C. V., Gonçalves, S. P., Fangueiro, R., & Ferreira, D. P. (2024). Extraction, characterization and properties evaluation of pineapple leaf fibers from Azores pineapple. Heliyon, 10(4), e26698. https://doi.org/10.1016/j.heliyon.2024.e26698

Chintagunta, A. D., Ray, S., & Banerjee, R. (2017). An integrated bioprocess for bioethanol and biomanure production from pineapple leaf waste. Journal of Cleaner Production, 165, 1508–1516. https://doi.org/10.1016/j.jclepro.2017.07.17

Chong, C. W., Liew, M. S., Ooi, W., Jamil, H., Lim, A., Hooi, S. L., Tay, C. S. C., & Tan, G. (2024). Effect of green banana and pineapple fibre powder consumption on host gut microbiome. Frontiers in Nutrition, 11, 1437645. https://doi.org/10.3389/fnut.2024.1437645

Choquecahua Mamani, D., Otero Nole, K. S., Chaparro Montoya, E. E., Mayta Huiza, D. A., Pastrana Alta, R. Y., & Aguilar Vitorino, H. (2020). Minimizing organic waste generated by pineapple crown: A simple process to obtain cellulose for the preparation of recyclable containers. Recycling, 5(4), 24. https://doi.org/10.3390/recycling5040024

Damasceno, K., Alvarenga Gonçalves, C. A., Dos Santos Pereira, G., Lacerda Costa, L., Bastianello Campagnol, P. C., Leal De Almeida, P., & Arantes-Pereira, L. (2016). Development of Cereal Bars Containing Pineapple Peel Flour (Ananas comosus L. Merril). Journal of Food Quality, 39(5), 417–424. https://doi.org/10.1111/jfq.12222

Dhanda, V., Arsalan, S., Shubham, & Kaushal, S. (2024). Revolutionizing material: The rise of bio leather as eco-friendly and sustainable approach. International Journal of Research in Agronomy, 7(11), 121–128. https://doi.org/10.33545/2618060X.2024.v7.i11b.1954

Eixemberg, D., Carballo-Arce, A. F., Vega-Baudrit, J. R., Trimino-Vásquez, H., Villegas-Peñaranda, L. R., Stöbener, A., Aguilar, F., Mora-Villalobos, J. A., Sandoval-Barrantes, M., Bubenheim, P., & Liese, A. (2024). Tropical agroindustrial biowaste revalorization through integrative biorefineries. Review Part II: pineapple, sugarcane and banana by-products in Costa Rica. Biomass Conversion and Biorefinery, 14, 4391-4418. https://doi.org/10.1007/s13399-022-02721-9

Fact. MR. (2024). Bromelain Market (FACT9158MR. Food & Beverage). Market Research Survey. https://www.factmr.com/report/bromelain-market

FAOSTAT (2024). Crops and Livestocks Products. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL

Fernandes Pereira, P. H., Ornaghi Junior, H. L., Arantes, V., & Hilário Cioffi, M. O. (2021). Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 499, 108227. https://doi.org/10.1016/j.carres.2020.108227

Figge, F., Thorpe, A. S., & Gutberlet, M. (2023). Definitions of the circular economy: Circularity matters. Ecological Economics, 208, 107823. https://doi.org/10.1016/j.ecolecon.2023.107823

Fissore, A., Marengo, M., Santoro, V., Grillo, G., Oliaro-Bosso, S., Cravotto, G., Dal Piaz, F., & Adinolfi, S. (2023). Extraction and characterization of bromelain from pineapple core: A strategy for pineapple waste valorization. Processes, 11(7), 2064. https://doi.org/10.3390/pr11072064

Fitriani, F., Aprilia, S., Arahman, N., Bilad, M. R., Suhaimi, H., & Huda, N. (2021a). Properties of biocomposite film based on whey protein isolate filled with nanocrystalline cellulose from pineapple crown leaf. Polymers, 13(24), 4278. https://doi.org/10.3390/polym13244278

Fitriani, F., Aprilia, S., Arahman, N., Bilad, M. R., Amin, A., Huda, N., & Roslan, J. (2021b). Isolation and characterization of nanocrystalline cellulose isolated from pineapple crown leaf fiber agricultural wastes using acid hydrolysis. Polymers, 13(23), 4188. https://doi.org/10.3390/polym13234188

Fitriani, Aprilia, N. A. S., & Arahman, N. (2020). Properties of nanocrystalline cellulose from pineapple crown leaf waste. IOP Conference Series: Materials Science and Engineering, 796, 012007. https://doi.org/10.1088/1757-899x/796/1/012007

Fouda-Mbanga, B. G., & Tywabi-Ngeva, Z. (2022). Application of pineapple waste to the removal of toxic contaminants: A review. Toxics, 10(10), 561. https://doi.org/10.3390/toxics10100561

Frimpong, K. A., Abban-Baidoo, E., & Marschner, B. (2021). Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil? Heliyon, 7(5), e09089. https://doi.org/10.1016/j.heliyon.2021.e07089

García-Villegas, A., Rojas-García, A., Villegas-Aguilar, M. del C., Fernández-Moreno, P., Fernández-Ochoa, Á., Cádiz-Gurrea, M. de la L., Arráez-Román, D., & Segura-Carretero, A. (2022). Cosmeceutical potential of major tropical and subtropical fruit by-products for a sustainable revalorization. Antioxidants, 11(2), 203. https://doi.org/10.3390/antiox11020203

Gomes dos Reis, C., Feitosa de Figueirêdo, R. M., de Melo Queiroz, A. J., Ferreira Paiva, Y., Santos Amadeu, L. T., Suelia dos Santos, F., de Lima Ferreira, J. P., Bezerra de Lima, T. L., Santos Andrade, F., Palmeira Gomes, J., Pereira da Silva, W., & da Costa Santos, D. (2023). Pineapple peel flours: Drying kinetics, thermodynamic properties, and physicochemical characterization. Processes, 11(11), 3161. https://doi.org/10.3390/pr11113161

Gunawardena, M. A., & Lokupitiya, E. (2024). Comparison of conventionally and organically grown pineapple in Sri Lanka: An integrative approach applying life cycle assessment and externalities. Cleaner Environmental Systems, 14, 100219. https://doi.org/10.1016/j.cesys.2024.100219

Gupta, M. (2022). Pineapple waste utilization: wealth from waste. The Pharma Innovation Journal, SP-11(6), 1971–1978. https://www.thepharmajournal.com/archives/2022/vol11issue6S/PartY/S-11-6-101-345.pdf

Gupta, R. K., Ali, E. A., El Gawad, F. A., Daood, V. M., Sabry, H., Karunanithi, S., & Srivastav, P. P. (2024). Valorization of fruits and vegetables waste byproducts for development of sustainable food packaging applications. Waste Management Bulletin, 2(4), 21–40. https://doi.org/10.1016/j.wmb.2024.08.005

Hanyabui, E., Frimpong, K. A., Annor-Frempong, F., & Atiah, K. (2024). Effect of pineapple waste biochar and compost application on the growth and yield of pineapple varieties in Ghana. Frontiers in Agronomy, 6, 1331377. https://doi.org/10.3389/fagro.2024.1331377

Hemung, B. O., Sompholkrang, M., Wongchai, A., Chanshotikul, N., & Ueasin, N. (2022). A study of the potential of by-products from pineapple processing in Thailand: Review article. International Journal of Health Sciences, 6(S4), 12605-12615. https://doi.org/10.53730/ijhs.v6nS4.12131

Hernández Pérez, R., Álvarez Castillo, A., Olarte Paredes, A., & Salgado Delgado, A. M. (2023). Obtención de nanocelulosa a partir de residuos postcosecha. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(30), 1e-47e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69662

Hikal, W. M., Said-Al, H., Tkachenko, K. G., Bratovcic, A., Szczepanek, M., & Maldonado, R. (2022). Sustainable and environmentally friendly essential oils extracted from pineapple waste. Biointerface Research in Applied Chemistry, 12(5), 6833–6844. https://doi.org/10.33263/BRIAC125.68336844

Ibrahim, M. F., Mohamad, N., Fairus, M. J. M., Jenol, M. A., & Abd-Aziz, S. (2024). Essential Oil from Pineapple Wastes. In S. Abd-Aziz, M. Gozan, M.F. Ibrahim & L.Y. Phang (Eds.), Chemical Substitutes from Agricultural and Industrial By-Products (pp. 103–121). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527841141.ch6

Idayanti, R. W., Arifin, A., Purbowati, E., & Purnomoadi, A. (2021). Utilization of pineapple waste as a roughage source diets for ruminant: A review. Advances in Biological Sciences Research, 20. https://doi.org/0.2991/absr.k.220309.026

Jalil, A. J., Mahmood, S., Rashid, A. H. A., Nasir, S. H., Ibrahim, S. A., & Ahmad, M. R. (2018). Extraction of eco-friendly natural dyes from piña leaves and their application on wool fabrics. International Journal of Engineering and Technology, 7(4.14), 382–386. https://doi.org/10.14419/ijet.v7i4.14.27689

Jawaid, M., Asim, M., Tahir, P., & Nasir, M. (Eds). (2020). Pineapple leaf fibers: Processing, properties, and applications. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-1416-6

Jehan, O. S., Sanusi, S. N. A., Sukor, M. Z., Noraini, M., Buddin, M. M. H. S., & Hamid, K. H. K. (2017). Biogas production from pineapple core. A preliminary study. AIP Conference Proceedings, 1885, 020246. https://doi.org/10.1063/1.5002440

Jose, M., Himashree, P., Sengar, A. S., & Sunil, C. K. (2022). Valorization of Food industry by-product (pineapple Pomace): A study to evaluate its effect on physicochemical and textural properties of developed cookies. Measurement: Food, 6, 100031. https://doi.org/10.1016/j.meafoo.2022.100031

Kabir, E., Kim, K.-H., & Kwon, E. E. (2023). Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 11, 1324533. https://doi.org/10.3389/fenvs.2023.1324533

Kabiri, S. (2024). Basket of Regenerative Agriculture Technologies for the Improvement of Soil Health in Africa. 50 Technologies for On-farm Demonstrations. Sasakawa Africa Association. https://www.saa-safe.org/news/news.php?nt=1&vid=635&lng=usa

Kainth, S., Sharma, P., & Pandey, O. P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19, 100562. https://doi.org/10.1016/j.apsadv.2023.100562

Kamaruddin, N. F. H., Adam, S., & Boll Kassim, N. Q. (2023). The effects of different pineapple waste on soil chemical properties and growth and yield of Okra (Abelmoschus esculentus L.). IOP Conference Series: Earth and Environmental Science, 1182(1), 012036. https://doi.org/10.1088/1755-1315/1182/1/012036

Kansakar, U., Trimarco, V., Manzi, M. V., Cervi, E., Mone, P., & Santulli, G. (2024). Exploring the therapeutic potential of bromelain: Applications, benefits, and mechanisms. Nutrients, 16(13), 2060. https://doi.org/10.3390/nu16132060

Khan, F., Hossain, N., Hasan, F., Rahman, S. M. M., Khan, S., Saifullah, A. Z. A., & Chowdhury, M. A. (2024a). Advances of natural fiber composites in diverse engineering applications—A review. Applications in Engineering Science, 18, 100184. https://doi.org/10.1016/j.apples.2024.100184

Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., Gul, S., Wahid, M. A., Hashem, A., Allah, A. E. F., & Ibrar, D. (2024b). Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), 166. https://doi.org/10.3390/plants13020166

Kirchherr, J., Yang, N. H. N., Schulze-Spüntrup, F., Heerink, M. J., & Hartley, K. (2023). Conceptualizing the circular economy (revisited): An analysis of 221 definitions. Resources, Conservation and Recycling, 194, 107001. https://doi.org/10.1016/j.resconrec.2023.107001

Kolaczkowski, S. T., Willacy, P., Jones, M. D.J., & Pugh, M. (2023). Separating hydrogen from syngas (produced from the gasification of waste) using pressure swing adsorption methodology and results. Chemical Engineering Transactions, 105, 91–96. https://doi.org/10.3303/CET23105016

Kumar, J., Kumar, A., Maurya, A. K., Gupta, H. S., Singh, S. P., & Sharma, C. (2024). Utilization of Ananas comosus Crown residue husk as a sustainable strength additive for EPR/LDPE blend composites. ACS Omega, 9(2), 2740–2751. https://doi.org/10.1021/acsomega.3c07697

Lalhruaitluangi, N., & Mandal, D. (2024). Medicinal and nutritional characteristics of pineapple in human health: A review. Journal of Postharvest Technology, 12(2), 1–13. https://doi.org/10.48165/jpht.2024.12.2.01

Layek, J., Narzari, R., Hazarika, S., Das, A., Rangappa, K., Devi, S., Balusamy, A., Saha, S., Mandal, S., Idapuganti, R. G., Babu, S., Choudhury, B. U., & Mishra, V. K. (2022). Prospects of biochar for sustainable agriculture and carbon sequestration: An overview for eastern Himalayas. Sustainability, 14(11), 6684. https://doi.org/10.3390/su14116684

Li, N., Wang, Q., Zhou, J., Li, S., Liu, J., & Chen, H. (2022). Insight into the progress on natural dyes: Sources, structural features, health effects, challenges, and potential. Molecules, 27(10), 3291. https://doi.org/10.3390/molecules27103291

Linh, N. T., Qui, N. H., Tai, L. T., Ngan, V. T. N., Thinh, N. P., & Huyen, T. N. (2024). The Effects of pineapple leaf powder on growth performance and carcass traits of Noi crossbred broilers. International Journal of Life Science and Agriculture Research, 3(5), 339–345. https://doi.org/10.55677/ijlsar/V03I5Y2024-02

Locci, C., Chicconi, E., & Antonucci, R. (2024). Current uses of bromelain in children: A narrative review. Children, 11(3), 377. https://doi.org/10.3390/children11030377

López-Núñez, J. S., Salcedo-Mendoza, J. G., Arteaga-Márquez, M. R., & Pérez-Sierra, O. A. (2018). Effect of drying on the physicochemical and techno-functional properties of pineapple peel flour. Indian Journal of Science and Technology, 11(46), 1–7. https://doi.org/10.17485/ijst/2018/v11i46/137450

Lourenço, S. C., Campos, D. A., Gómez-García, R., Pintado, M., Oliveira, M. C., Santos, D. I., Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2021). Optimization of natural antioxidants extraction from pineapple peel and their stabilization by spray drying. Foods, 10(6), 1255. https://doi.org/10.3390/foods10061255

Mahatme, S. S., Kanse, N. G., & Bandsode, A. K. (2018). Pulp and paper production from pineapple leaves as a substitute to wood source: A review. International Journal of Creative Research Thoughts, 6(2), 20–26. https://ijcrt.org/papers/IJCRT1813604.pdf

Mala, T., Piayura, S., & Itthivadhanapong, P. (2024). Characterization of dried pineapple (Ananas comosus L.) peel powder and its application as a novel functional food ingredient in cracker product. Future Foods, 9, 100322. https://doi.org/10.1016/j.fufo.2024.100322

Málaga, J. A., & Velázquez, P. (2020). Obtención de fibra de rastrojo de la cosecha de piña (Ananas comosus L.) y su caracterización como alternativa para elaborar papel. Investigación, 28(1), 223–229. https://doi.org/10.51440/unsch.revistainvestigacion.28.1.2020.375

Malik, F. R., Yuan, H. B., Moran, J. C., & Tippayawong, N. (2023). Overview of hydrogen production technologies for fuel cell utilization. Engineering Science and Technology, an International Journal, 43, 101452. https://doi.org/10.1016/j.jestch.2023.101452

Manzoor, Z., Nawaz, A., Mukhtar, H., & Haq, I. (2016). Bromelain: Methods of Extraction, Purification and Therapeutic Applications. Brazilian Archives of Biology and Technology, 59, e16150010. https://doi.org/10.1590/1678-4324-2016150010

Meena, L., Sengar, A. S., Neog, R., & Sunil, C. K. (2022). Pineapple processing waste (PPW): Bioactive compounds, their extraction, and utilisation: a review. Journal of Food Science and Technology, 59(11), 4152–4164. https://doi.org/10.1007/s13197-021-05271-6

Mehraj, M., Das, S., Feroz, F., Waheed Wani, A., Dar, S. q, Kumar, S., Wani, A. K., & Farid, A. (2024). Nutritional composition and therapeutic potential of pineapple peel – A comprehensive review. Chemistry & Biodiversity, 21(5), e202400315. https://doi.org/10.1002/cbdv.202400315

Mendoza, J. W., Velázquez, P. F., & Gómez, Y. (2020). Caracterización estructural, física y química de la fibra de rastrojo de la cosecha de piña (Ananas comosus) golden como alternativa para elaborar papel. INGENIERÍA INVESTIGA, 2(2), 314–323. https://doi.org/10.47796/ing.v2i2.408

Mgeni, S. T., Mtashobya, L. A., & Emmanuel, J. K. (2024). Bioethanol production from pineapple fruit waste juice using bakery yeast. Heliyon, 10(19), e38172. https://doi.org/10.1016/j.heliyon.2024.e38172

Mishra, K., Siwal, S. S., Sithole, T., Singh, N., Hart, P., & Thakur, V. K. (2024). Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability. Journal of Bioresources and Bioproducts, 9(3), 253–282. https://doi.org/10.1016/j.jobab.2023.12.002

Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics: Review. Journal of Materials Science: Materials in Medicine, 31(6), 50. https://doi.org/10.1007/s10856-020-06390-w

Mkilima, T., Saspugayeva, G., Kaliyeva, G., Samatova, I., Rakhimova, B., Tuleuova, G., Tauyekel, A., Batyayeva, Y., Karibzhanova, R., & Cherkeshova, S. (2024). Enhanced adsorption of emerging contaminants from pharmaceutical wastewater using alkaline-treated pineapple leaf fiber integrated with UV-LED technology. Case Studies in Chemical and Environmental Engineering, 10, 101000. https://doi.org/10.1016/j.cscee.2024.101000

Mohamad, N., Ramli, N., Abd-Aziz, S., & Ibrahim, M. F. (2019). Comparison of hydro-distillation, hydro-distillation with enzyme-assisted and supercritical fluid for the extraction of essential oil from pineapple peels. 3 Biotech, 9(6), 234. https://doi.org/10.1007/s13205-019-1767-8

Mohammadi, H., Ahmad, Z., Mazlan, S. A., Faizal Johari, M. A., Siebert, G., Petrů, M., & Rahimian Koloor, S. S. (2023). Lightweight glass fiber-reinforced polymer composite for automotive bumper applications: A review. Polymers, 15(1), 193. https://doi.org/10.3390/polym15010193

Mohd Ali, M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137, 109675. https://doi.org/10.1016/j.foodres.2020.109675

Moreno, G., Ramírez, K., Esquivel, M., & Jiménez, G. (2017). Isolation and characterization of nanocellulose obtained from industrial crop waste resources by using mild acid hydrolysis. Journal of Renewable Materials, 1–8. https://doi.org/10.7569/JRM.2017.634167

Moya, R., Tenorio, C., Puente-Urbina, A., Rosales-López, C., & Vega-Baudrit, J. R. (2023). Production of paper using biopulping of pineapple leaves fibers (PALF) followed by chemical and xylanase-enzymatic processing. Journal of Natural Fibers, 20(1), 2163025. https://doi.org/10.1080/15440478.2022.2163025

Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815

Naha, A., Debroy, R., Sharma, D., Shah, M. P., & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner and Circular Bioeconomy, 5, 100050. https://doi.org/10.1016/j.clcb.2023.100050

Namphonsane, A., Amornsakchai, T., Chia, C. H., Goh, K. L., Thanawan, S., Wongsagonsup, R., & Smith, S. M. (2023). Development of biodegradable rigid foams from pineapple field waste. Polymers, 15(13), 2895. https://doi.org/10.3390/polym15132895

Nawangsari, P., Fatra, W., Kusuma, A., Badri, M., Dedi Rosa, P. C., & Masnur, D. (2024). Microcellulose from pineapple leaf fiber as a potential sustainable material. Extraction and characterization. Jurnal Polimesin, 22(1). https://doi.org/10.30811/jpl.v22i1

Nordin, L., Sulaiman, R., Bakar, J., & Noranizan, M. A. (2023). Comparison of phenolic and volatile compounds in MD2 pineapple peel and core. Foods, 12, 2233. https://doi.org/10.3390/foods12112233

Omar, A., Ahmad, S., Chen, R. S., & Lamin, F. (2023). Biodegradable pineapple leaf fiber/clay reinforced polylactic acid nanocomposites: Effects of extrusion mixing on tensile and thermal properties. International Journal of Chemical and Biochemical Sciences, 24(7), 236–245. https://www.iscientific.org/wp-content/uploads/2023/12/32-ijcbs-23-24-7-32.pdf

Otieno, E. O., Kiplimo, R., & Mutwiwa, U. (2023). Optimization of anaerobic digestion parameters for biogas production from pineapple wastes co-digested with livestock wastes. Heliyon, 9(3), e14041. https://doi.org/10.1016/j.heliyon.2023.e14041

Paz-Arteaga, S. L., Cadena-Chamorro, E., Gómez-García, R., Serna-Cock, L., Aguilar, C. N., & Torres-León, C. (2024). Unraveling the valorization potential of pineapple waste to obtain value-added products towards a sustainable circular bioeconomy. Sustainability, 16(16), 7236. https://doi.org/10.3390/su16167236

Polania Rivera, A. M., Ramírez Toro, C., Londoño, L., Bolivar, G., Ascacio, J. A., & Aguilar, C. N. (2023). Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. Journal of Food Measurement and Characterization, 17(1), 586–606. https://doi.org/10.1007/s11694-022-01627-4

Rabiu, Z., Maigari, F. U., Lawan, U., & Mukhtar, Z. G. (2018). Chapter 11. Pineapple waste utilization as a sustainable means of waste management. In: Z. A. Zakaria (ed.) Sustainable Technologies for the Management of Agricultural Wastes, Applied Environmental Science and Engineering for a Sustainable Future. https://doi.org/10.1007/978-981-10-5062-6_11

Rahman, M. M., & Yang, D. K. (2018). Effects of Ananas comosus leaf powder on broiler performance, haematology, biochemistry, and gut microbial population. Revista Brasileira de Zootecnia, 47, e20170064. https://doi.org/10.1590/rbz4720170064

Ramli, S. N. R., Fadzullah, S. H. S. M., & Mustafa, Z. (2017). The effect of alkaline treatment and fibre length on pineapple leaf fibre reinforced poly lactic acid biocomposites. Jurnal Teknologi, 79(4-2), 111–115. https://journals.utm.my/jurnalteknologi/article/view/11293/6182

Roda, A., & Lambri, M. (2019). Food uses of pineapple waste and by-products: A review. International Journal of Food Science and Technology, 54(4), 1009–1017. https://doi.org/10.1111/ijfs.14128

Rodsamran, P., & Sothornvit, R. (2019). Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food and Bioproducts Processing, 118, 198–206. https://doi.org/10.1016/j.fbp.2019.09.010

Rojas-Flores, S., Nazario-Naveda, R., Benites, S. M., Callozo-Caedenas, M., Delfín-Narciso, D., & Díaz, F. (2022). Use of pineapple waste as fuel in microbial fuel cell for the generation of bioelectricity. Molecules, 27(21), 7389. https://doi.org/10.3390/molecules27217389

Roskan, N. F., Zainol, N., & Samad, K. A. (2022). Chlorophyll extraction from pineapple plantation waste through mechanical extraction. Biocatalysis and Agricultural Biotechnology, 39, 102264. https://doi.org/10.1016/j.bcab.2021.102264

Saberi Riseh, R., Gholizadeh Vazvani, M., Hassanisaadi, M., & Kumar Thakur, V. (2024). Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Industrial Crops and Products, 208, 117904. https://doi.org/10.1016/j.indcrop.2023.117904

Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. Journal of Food Science and Technology, 53(3), 1698–1708. https://doi.org/10.1007/s13197-015-2100-0

Saini, R., Singhania, R. R., Chen, C. W., Patel, K., Saini, J. K., Singh, C., & Dong, C.D. (2023). Pineapple leaves waste. A potential feedstock for production of value-added products in biorefinery. Indian Journal of Experimental Biology, 61(10), 729–738. https://doi.org/10.56042/ijeb.v61i10.1795

Salve, R., & Ray, S. (2020). Comprehensive study of different extraction methods of extracting bioactive compounds from pineapple waste. A review. The Pharma Innovation Journal, 9(6), 327–340. https://www.thepharmajournal.com/archives/2020/vol9issue6/PartE/9-5-77-110.pdf

Santos, S. M., Assis, A. C., Gomes, L., Nobre, C., & Brito, P. (2023). Waste gasification technologies: A brief overview. Waste, 1(1), 140–165. https://doi.org/10.3390/waste1010011

Santulli, C., Palanisamy, S., & Kalimuthu, M. (2022). Chapter 14. Pineapple fibers, their composites and applications. In S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, T. Ozbakkaloglu, & H. Wang (Eds.), Plant Fibers, their Composites, and Applications (pp. 323–346). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824528-6.00007-2

Sarangi, P. K., Singh, A. K., Srivastava, R. K., & Gupta, V. K. (2023). Recent progress and future perspectives for zero agriculture waste technologies: Pineapple waste as a case study. Sustainability, 15(4), 3575. https://doi.org/10.3390/su15043575

Sarkic, A., & Stappen, I. (2018). Essential oils and their single compounds in cosmetics. A critical review. Cosmetics, 5(1), 11. https://doi.org/10.3390/cosmetics5010011

Seenak, P., Kumphune, S., Malakul, W., Chotima, R., & Nernpermpisooth, N. (2021). Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutrition & Metabolism, 18(36), 1–10. https://doi.org/10.1186/s12986-021-00566-z

Sethupathi, M., Khumalo, M. V., Skosana, S. J., & Muniyasamy, S. (2024). Recent developments of pineapple leaf fiber (PALF) utilization in the polymer composites. A review. Separations, 11(8), 245. https://doi.org/10.3390/separations11080245

Shimavathi, C. S., Gunaseelan, S., Soosai, M. R., Vignesh, N. S., Varalakshmi, P., Kumar, R. S., Karthikumar, S., Kumar, R. V., Baskar, R.; Rigby, S. P., Syed, A., Elgorban, A. M., & Moorthy, I.M.G. (2022). Process optimization and characterization of pectin derived from underexploited pineapple peel biowaste as a value-added product. Food Hydrocolloids, 123, 107141. https://doi.org/10.1016/j.foodhyd.2021.107141

Shoudho, K. N., Khan, T. H., Ara, U. R., Khan, M. R., Shawon, Z. B. Z., & Hoque, M. E. (2024). Biochar in global carbon cycle: Towards sustainable development goals. Current Research in Green and Sustainable Chemistry, 8, 100409. https://doi.org/10.1016/j.crgsc.2024.100409

Singh, A. K., Pal, P., Rathore, S. S., Sahoo, U. K., Sarangi, P. K., Prus, P., & Dziekański, P. (2023). Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements. Energies, 16(14), 5409. https://doi.org/10.3390/en16145409

Soares-Faria, L. U., Soares-Pacheco, B. J., Couto-Oliveira, G., & Lacerda-Silva, J. (2020). Production of cellulose nanocrystals from pineapple Crown fibers through alkaline pretreatment and acid hydrolysis under different conditions. Journal of Materials Research and Technology, 9(6), 12346–12353. https://doi.org/10.1016/j.jmrt.2020.08.093

Soomro, M. A., Khan, S., Majid, A., Bhatti, S., Perveen, S., & Phull, A. R. (2024). Pectin as a biofunctional food: Comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. Discover Applied Sciences, 6(6), 298. https://doi.org/10.1007/s42452-024-05968-1

Sossa, E. L., Agbangba, C. E., Koura, T. W., Ayifimi, O. J., Houssoukpèvi, I. A., Bouko, N. D. B., Yalinkpon, F., & Amadji, G. L. (2024). Dynamics of co-composting of pineapple harvest and processing residues with poultry litter and compost quality. Nature Portfolios: Scientific Reports, 14(1), 17194. https://doi.org/10.1038/s41598-024-66335-z

Srikhaow, A., Win, E. E., Amornsakchai, T., Kiatsiriroat, T., Kajitvichyanukul, P., & Smith, S. M. (2023). Biochar Derived from Pineapple Leaf Non-Fibrous Materials and Its Adsorption Capability for Pesticides. ACS Omega, 8(29), 26147–26157. https://doi.org/10.1021/acsomega.3c02328

Statista. (2023). Leading countries in pineapple production worldwide in 2022. Agriculture. Farming. https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/

Sukri, S. A. M., Andu Y., Sarijan, S., Khalid, H. N. M., Zulhisyam Abdul, K., Harun, H. C., Rusli, N. D., Mat, K., Khalif, R. I. A. R., Wei, L. S., Rahman, M. M., Hakim, A. H., Lokman, N. H. N., Hamid, N. K. A., Khoo, M. I., & Van Doan, H. (2023). Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. Annals of Animal Science, 23(2), 339–352. https://doi.org/10.2478/aoas-2022-0080

Sukri, S. A. M., Andu, Y., Tuan Harith, Z. T., Sarijan, S., Naim Firdaus Pauzi, M., Wei, L. S., Dawood, M. A. O., & Zulhisyam Abdul, K. (2022). Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) fingerlings. Saudi Journal of Biological Sciences, 29(4), 2514–2519. https://doi.org/10.1016/j.sjbs.2021.12.027

Sukruansuwan, V., & Napathorn, S. C. (2018). Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels, 11(1), 202. https://doi.org/10.1186/s13068-018-1207-8

Tan, M., Zhong, X., Xue, H., Cao, Y., Tan, G., & Li, K. (2024). Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. International Journal of Biological Macromolecules, 279, 135192. https://doi.org/10.1016/j.ijbiomac.2024.135192

Tripathi, A. (2023). Application of crude leaf extracts of pineapple in pest control of field collected insects. International Journal of Fauna and Biological Studies, 10(04), 55-59. https://www.faunajournal.com/archives/2023/vol10issue4/PartA/10-5-5-525.pdf

Uma Devi, L.; Bhagawan, S. S. & Thomas, S. (2012). Polyester composites of short pineapple fiber and glass fiber: Tensile and impact properties. Polymer Composites, 33(7), 1064–1070. https://doi.org/10.1002/pc.22217

Umesh, M., Suresh, S., Santosh, A. S., Prasad, S., Chinnathambi, A., Al Obaid, S., Jhanani, G. K., & Shanmugam, S. (2023). Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environmental Research, 229, 115973. https://doi.org/10.1016/j.envres.2023.115973

Unnikrishnan, G., & Ramasamy, V. (2022). Anaerobic digestion of pineapple waste for biogas production and application of slurry as liquid fertilizer carrier for phosphate solubilizers. Indian Journal of Agricultural Research, 56(4), 408–414. https://doi.org/10.18805/IJARe.A-5777

Valdés García, A., Domingo Martínez, M. I., Ponce Landete, M., Prats Moya, M. S., & Beltrán Sanahuja, A. (2021). Potential of Industrial Pineapple (Ananas comosus (L.) Merrill) By-Products as Aromatic and Antioxidant Sources. Antioxidants, 10(11), 1767. https://doi.org/10.3390/antiox10111767

Van Doan, H., Hoseinifar, S. H., Harikrishnan, R., Khamlor, T., Punyatong, M., Tapingkae, W., Yousefi, M., Palma, J., & El-Haroun, E. (2021). Impacts of pineapple peel powder on growth performance, innate immunity, disease resistance, and relative immune gene expression of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 114, 311–319. https://doi.org/10.1016/j.fsi.2021.04.002

Vargas-Vargas, M. A., Hernández-Chaverri, R. A., & Jiménez-Silva, A. (2019). Caracterización de la biomasa de piña (Ananas comosus) y su valoración en la propagación micelial del hongo shiitake (Lentinula edodes). Yulök Revista de Innovación Académica, 3(1), 13–27. https://doi.org/10.47633/yulk.v3i1

Varilla, C., Marcone, M., Paiva, L., & Baptista, J. (2021). Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods, 10(10), 2249. https://doi.org/10.3390/foods10102249

Varqani, N. A., & Bastian, F. (2023). Review: Utilization of cellulose in food products. IOP Conference Series: Earth and Environmental Science, 1230(1), 012039. https://doi.org/10.1088/1755-1315/1230/1/012039

Vasić, K., Knez, Ž., & Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 26(3), 753. https://doi.org/10.3390/molecules26030753

Velázquez, D., Valverde, J. W., Castañeda, C., López, R. P., Jave, J., & Benites-Alfaro, E. (2021). The ecological paper obtained from Ananas comosus waste as an alternative for use in a circular economy. 19th LACCEI International Multi-Conference for Engineering, Education, and Technology. http://dx.doi.org/10.18687/LACCEI2021.1.1.350

Velázquez, P., & Málaga, J. (2019). Diseño y desarrollo de cuero vegetal a base de los residuos de las fibras de hoja de piña (Ananas comosus) golden del VRAEM. Investigación, 27(1), 131. https://doi.org/10.51440/unsch.revistainvestigacion.2019.1.114

Wagh, M. S., Sowjanya, S., Nath, P. C., Chakraborty, A., Amrit, R., Mishra, B., Mishra, A. K., & Mohanta, Y. K. (2024). Valorization of agro-industrial wastes: Circular bioeconomy and biorefinery process. A sustainable symphony. Process Safety and Environmental Protection, 183, 708-725. https://doi.org/10.1016/j.psep.2024.01.055

Wang, G., Ren, Y., Bai, X., Su, Y., & Han, J. (2022). Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants, 11(23), 3200. https://doi.org/10.3390/plants11233200

Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing Soil Health and Plant Growth through Microbial Fertilizers: Mechanisms, Benefits, and Sustainable Agricultural Practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609

Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21(1), 55–80. https://doi.org/10.1007/s10311-022-01499-6

Yang, X., Liu, L., Tan, W., Liu, C., Dang, Z., & Qiu, G. (2020). Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environmental Pollution, 264, 114745. https://doi.org/10.1016/j.envpol.2020.114745

Yin, H., Song, P., Chen, X., Huang, Q., & Huang, H. (2022). A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material. International Journal of Biological Macromolecules, 221, 1606–1617. https://doi.org/10.1016/j.ijbiomac.2022.09.060

Yousuf, A., Pirozzi, D., & Sannino, F. (2020). Fundamentals of lignocellulosic biomass. In A. Yousuf, D. Pirozzi, & F. Sannino (Eds.), Lignocellulosic Biomass to Liquid Biofuels (pp. 1–15). Elsevier. https://doi.org/10.1016/B978-0-12-815936-1.00001-0

Zúñiga-Martínez, B. S., Domínguez-Ávila, J. A., Robles-Sánchez, R. M., Ayala-Zavala, J. F., Villegas-Ochoa, M. A., & González Aguilar, G. A. (2022). Agro-Industrial fruit byproducts as health-promoting ingredients used to supplement baked food products. Foods, 11, 3181. https://doi.org/10.3390/foods11203181

Publicado

2025-06-18

Número

Sección

Publicaciones arbitradas (artículos, ensayos, revisiones bibliográficas)

Cómo citar

Vargas Vargas, M. A., & Jiménez Silva, A. . (2025). Valorización integral de los residuos del cultivo de piña para productos de alto valor agregado: una revisión desde una perspectiva global. Revista Académica Arjé, 8(1), 1-53. https://doi.org/10.47633/zhp44522

Artículos similares

11-20 de 24

También puede Iniciar una búsqueda de similitud avanzada para este artículo.