Agricultural Planning with Quantitative Models
DOI:
https://doi.org/10.47633/86vt6976Keywords:
agricultural planning, linear programming, time series, Prophet, FAOSTAT, maize, wheatAbstract
This study presents an agricultural planning approach based on the use of quantitative forecasting and optimization models to improve the allocation of arable land between maize and wheat. Using official data from the Food and Agriculture Organization of the United Nations (FAO, 2023), time series methods were implemented through the Prophet model to estimate the evolution of future production (Taylor & Letham, 2018). In addition, classical linear programming was applied to determine the optimal distribution of hectares to be cultivated, maximizing expected yield under conditions of resource constraints (Dantzig, 1963). The analysis suggests that integrating forecasting techniques with optimization models enables more efficient agricultural decision-making grounded in real data. Furthermore, the potential of these tools to generate predictive scenarios that guide both strategic and operational planning at the national or regional level is highlighted. This study provides evidence of how technology and data analysis can positively transform the design of sustainable agricultural policies.
Downloads
References
Rodríguez, A. (2023). Estrategias de desarrollo económico para el siglo XXI. Editorial Académica.
Dantzig, G. B. (1963). Linear programming and extensions. Princeton: Princeton University Press.
Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. doi:https://doi.org/10.1080/00031305.2017.1380080
Food and Agriculture Organization of the United Nations (FAO). (2023). Retrieved from FAOSTAT statistical database: https://www.fao.org/faostat/en/#data/QCL
Castillo, E., Delgado, O., de León, H., Escartin, L., Saéz, Y., & Collado, E. (2021). Mejoramiento del uso de suelo en la agricultura mediante herramientas basadas en optimización. I+D Tecnológico, 17(2). https://doi.org/10.33412/idt.v17.2.3144
Custodio, J. M., Billones, R. K., Concepcion, R., & Vicerra, R. R. (2024). Optimization of Crop Harvesting Schedules and Land Allocation Through Linear Programming. Process Integration and Optimization for Sustainability, 8(1). https://doi.org/10.1007/s41660-023-00357-4
Esteso, A., Alemany, M. M. E., Ortiz, Á., & Iannacone, R. (2022). Crop planting and harvesting planning: Conceptual framework and sustainable multi‐objective optimization for plants with variable molecule concentrations and minimum time between harvests. Applied Mathematical Modelling, 112. https://doi.org/10.1016/j.apm.2022.07.023
Ji, H., He, X., Wang, W., & Zhang, H. (2023). Prediction of Winter Wheat Harvest Based on Back Propagation Neural Network Algorithm and Multiple Remote Sensing Indices. Processes, 11(1). https://doi.org/10.3390/pr11010293
Piedra Rivas, M. C., Banegas Campoverde, C. M., & Castillo Ortega, Y. (2021). Modelo de optimización de la cadena de distribución de la agricultura familiar campesina en las parroquias Quingeo y Santa Ana del Cantón Cuenca. ConcienciaDigital, 4(2). https://doi.org/10.33262/concienciadigital.v4i2.1630
Rambauth Ibarra, G. E. (2022). Agricultura de Precisión: La integración de las TIC en la producción Agrícola. Computer and Electronic Sciences: Theory and Applications, 3(1). https://doi.org/10.17981/cesta.03.01.2022.04
Desai, M., & Shingala, A. (2023). Time Series Prediction of Wheat Crop based on FB Prophet Forecast Framework. ITM Web of Conferences, 53. https://doi.org/10.1051/itmconf/20235302014
Hunt, J., Rees, H. van, Hochman, Z., Carberry, P., Holzworth, D., Dalgliesh, N., Poulton, P., Rees, S. van, Huth, N., & Peake, A. (2006). Yield Prophet ®: An online crop simulation service. Proceedings of the 13th ASA Conference,"Ground Breaking Stuff", January.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Cristina Urbina-Céspedes, Mauricio Alonso Campos-Cerdas, Juan Bautista Núñez-Parrales

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All articles in the Revista Académica Arjé are published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
This means that:
-
Attribution: Proper credit must be given to the original authors, a link to the license must be included, and any changes made must be indicated.
-
NonCommercial: The material may not be used for commercial purposes.
-
ShareAlike: If the work is adapted or remixed, the resulting version must be distributed under the same license.
More information at: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en






